Beginning Anomaly Detection Using



Download 26,57 Mb.
Pdf ko'rish
bet32/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   28   29   30   31   32   33   34   35   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

confusion matrix (Figure 

2-1


). 

One thing to note is that in the case of anomaly detection, you only need a 2x2 confusion 

matrix since data points are either anomalies or they are normal data.

Chapter 2   traditional Methods of anoMaly deteCtion




27

From the values in each of the four squares, you can derive values for 



accuracy

precision, and recall to gain a better understanding of how your model performs.

Here’s the confusion matrix with all the formulas (Figure 

2-2

):

Figure 2-1.  Confusion matrix



Chapter 2   traditional Methods of anoMaly deteCtion


28

• 

Precision is a measurement that describes how many of your true 

predictions actually turned out to be true. In other words, for all of 

your true predictions, how many did the model get right?

• 

Accuracy is a measurement that describes how many predictions 

you got right over the entire data set. In other words, for the entire 

data set, how many did the model correctly predict were positive  

and negative?

• 

Recall is a measurement that describes how many you predicted true 

for all data points that were actually true. In other words, for all of 

the true data points in the data set, how many of them did the model 

predict correctly?



Figure 2-2.  Precision, Accuracy and Recall

Chapter 2   traditional Methods of anoMaly deteCtion




29

From here, you can derive more values.



F1 Score is the harmonic mean of precision and recall. It’s a metric that can tell us 

how accurate the model is, since it takes into account both how well the model makes 

true predictions that are actually true, and how many of the total true predictions that 

the model correctly predicted.

 

F Score


1

2

=



*

*

+



Precision Recall

Precision Recall

 

The 




Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   28   29   30   31   32   33   34   35   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish