Beginning Anomaly Detection Using



Download 26,57 Mb.
Pdf ko'rish
bet212/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   208   209   210   211   212   213   214   215   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

save_weights_only: If set to True, then only the weights will be 

saved. Essentially, if True, model.save_weights(filepath), else model.

save(filepath).

• 

mode: Can choose between auto, min, or max. If save_best_only is 

True, then you should pick a choice that would suit the monitored 

quantity best. If you chose val_acc for monitor, then you want to pick 

max for mode, and if you choose val_loss for monitor, pick min for 

mode.


• 

period: How many epochs there are between each checkpoint.

Now, you can train your model using code similar to Figure 

A-5

.

Appendix A   intro to KerAs




324

The model.fit() function has a big list of parameters:

• 

x: This is a Numpy array representing the training data. If you have 

multiple inputs, then this is a list of Numpy arrays that are all training 

data.

• 

y: This is a Numpy array that represents the target or label data. 



Again, if you have multiple outputs, then this is a list of target data 

Numpy arrays.

• 

batch_size: Set to 32 by default. This is the integer number of 

samples to run through the network before updating the gradients.

• 


Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   208   209   210   211   212   213   214   215   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish