Beginning Anomaly Detection Using



Download 26,57 Mb.
Pdf ko'rish
bet209/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   205   206   207   208   209   210   211   212   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

 Model  Creation

In Keras, you can build a 



sequential model, or a functional model.

The 


sequential model is built as shown in Figure 

A-1


.

Figure A-1.  Code defining a sequential model in Keras

Figure A-2.  Code defining a functional model in Keras

Once you’ve defined a sequential model, you can simply add layers to it by calling 

model_name.add(), where the layer itself is the parameter. Once you’ve finished adding 

all of the layers that you want, you are ready to compile and train the model on whatever 

data you have.

Now, let’s look at the 



functional model, the format of which is what you’ve used in 

the book thus far (see Figure 

A-2

).

The functional model allows you to have more flexibility in how you define your 



neural network. With it, you can connect layers to any other layer that you want, instead 

of being limited to just the previous layer like in the sequential model. This allows you 

to share a layer with multiple other layers or even reuse the same layer, allowing you to 

create more complicated models.

Appendix A   intro to KerAs



322

Once you’re done defining all of you layers, you simply need to call Model() with 

your input and output parameters respectively to finish your whole model. Now, you can 

continue onwards to compiling and training your model.




Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   205   206   207   208   209   210   211   212   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish