Beginning Anomaly Detection Using



Download 26,57 Mb.
Pdf ko'rish
bet211/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   207   208   209   210   211   212   213   214   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

sample_weight_mode: If your data has 2D weights with timestep- 

wise sample weighting, then you should pass in "temporal". 

Otherwise, None defaults to 1D sample-wise weights. You can also 

pass a list or dictionary of sample_weight_modes if your model has 

multiple outputs. One thing to note is that you need at least a 3D 

output, with one dimension being time.

Appendix A   intro to KerAs



323

• 

weighted_metrics: A list of metrics for the model to evaluate and 

weight using sample_weight or class_weight during the training and 

testing processes.

After compiling the model, you can also call a function to 

save your model as in 

Figure 


A-4

.

Figure A-4.  A callback to save the model to some file path

Here are the set of parameters associated with ModelCheckpoint():

• 

filepath: The path where you want to save the model file. Typing just 

“saved_model.h5” saves it in the same directory.

• 

monitor: The quantity that you want the model to monitor. By 

default, it’s set to “val_loss”.

• 

verbose: Sets verbosity to 0 or 1. It’s set to 0 by default.

• 

save_best_only: If set to True, then the model with the best 

performance according to the quantity monitored will be saved.

• 


Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   207   208   209   210   211   212   213   214   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish