Beginning Anomaly Detection Using


bad margin or suboptimal margin



Download 26,57 Mb.
Pdf ko'rish
bet54/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   50   51   52   53   54   55   56   57   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

bad margin or suboptimal margin has 

the hyperplane too close to one class or the distance not be as far as it can be to the 

hyperplane for each point or support vector.

As for the one-class support vector machine, Figure 

2-40

 shows what the graph 



would look like.

During training, the OC-SVM learns the decision boundary for normal observations, 

accounting for a few outliers. If 

novelties, new data points that the model has never seen 

before, fall within this decision boundary, they are considered normal by the model. If 

they fall outside of the boundary, they are considered anomalous. This technique is an 

example of semi-supervised novelty detection, where the goal is to train the model on 

normal data, and then it attempts to find anomalies in new data.

By doing so, the OC-SVM can capture the shape of the data pretty well thanks to the 

decision boundary that captures most of the training observations.

Figure 2-40.  An example of the decision boundary for a one-class support vector 

machine

Chapter 2   traditional Methods of anoMaly deteCtion




63


Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   50   51   52   53   54   55   56   57   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish