Beginning Anomaly Detection Using


art_daily_perfect_square_wave



Download 26,57 Mb.
Pdf ko'rish
bet160/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   156   157   158   159   160   161   162   163   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

 art_daily_perfect_square_wave

This data set has no noise or anomalies and is a normal time series dataset. As you can 

see below, the time series has values at different timestamps.

Using visualization, you can plot the time series now. You convert the timestamp to 

datetime for this work and also drop the timestamp column. As shown below, the time 

series shows the datatime vs. the value column.

Dataset: art_daily_perfect_square_wave.csv

Figure 6-44.  A graph showing anomalies

Chapter 6   Long Short-term memory modeLS 




249

Figure 


6-45

 shows the code to generate a graph showing the time series.



Figure 6-45.  A graph showing the time series

Let’s add the anomaly column to the original dataframe and prepare a new 

dataframe. Using visualization, you can plot the new time series now. As shown below, 

the time series shows the datatime vs. value column. Since there are no anomalies, 

everything is green. Figure 

6-46


 shows the code to generate a graph showing anomalies.

Figure 6-46.  A graph showing anomalies

Chapter 6   Long Short-term memory modeLS 




250

Since this data set has no noise or anomalies and is a normal time series dataset, 

there are no anomalies (datapoints in RED) shown and everything is green.

Next, let’s examine another dataset which is different from the current dataset. You 

will build a LSTM model and see if there are anomalies or not.


Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   156   157   158   159   160   161   162   163   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish