Beginning Anomaly Detection Using



Download 26,57 Mb.
Pdf ko'rish
bet168/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   164   165   166   167   168   169   170   171   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

Parallel computations: Convolutional networks pair well with 

GPU training, particularly because the matrix-heavy calculations 

of the convolutional layers are well suited to the structure of GPUs, 

which are configured to carry out matrix calculations that are part of 

graphics processing. Because of this, TCNs can train much faster than 

RNNs.

• 

Flexibility: TCNs can change input size, filter size, increase dilation 



factors, stack more layers, etc. in order to easily be applied to various 

domains.


• 

Consistent gradients: Because TCNs are comprised of convolutional 

layers, they backpropagate differently than RNNs do, and thus all 

of the gradients are saved. RNNs have a problem called exploding 

or vanishing gradients, where sometimes the calculated gradient is 

either extremely large or extremely small, leading to the readjusted 

weight to be too extreme of a change or to be a relatively nonexistent 

change. To combat this, types of RNNs such as the LSTM, GRU, and 

HF-RNN, were developed.

• 


Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   164   165   166   167   168   169   170   171   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish