Bchx kodlarini kodlash va dekodlash jarayonini modellashtirish va natijalarini tahlil qilish



Download 54,01 Kb.
bet1/3
Sana30.04.2022
Hajmi54,01 Kb.
#596932
  1   2   3

BCHX KODLARINI KODLASH VA DEKODLASH JARAYONINI MODELLASHTIRISH VA NATIJALARINI TAHLIL QILISH



  1. ISHDAN MAQSAD

Ushbu laboratoriya ishi quyidagilarni o’rganishga mo’ljallangan:



  • Ma’lumot uzatish tizim va tarmoqlarida mavjud kodlash usullari bilan tanishish;

  • Mavjud kodlash usullarini shovqinbardoshliligini taqqoslash va tahlil qilish.

  1. QISQACHA NAZARIY MA’LUMOT

Qulay kodlash va dekodlash algoritmlari taklif etilgan notasodifiy kodlarning orasidagi eng mashxurlaridan biri BCHX kodlaridir (Bouza-Choudxuri-Xekvingem). BCHX kodlash va dekodlash jarayonlarini sezilarli darajada osonlashtirgan, aniq algebraik strukturaga ega bo‘lgan siklik kodlar oilasiga mansubdir.


Hosil qilinadigan BCHX kodning polinomi kod uzunligi va berilgan kod masofasi d0 ≥ 5 bilan aniqlanadi. BCHX kodi uzunligi n=2m-1 ifodasi orqali aniqlanadi,
bu yerda m – istalgan butun son, m=log2(n + 1).
Tekshiriladigan razryadlar soni quyidaicha aniqlanadi:


(7.1)

BCHX kodning hosil qilinadigan polinomi minimal polinomlarning eng kichik umumiy karralisi hisoblanib qaysiki tartibi d0 –2 ga teng.


P(x) = EKUK {m1(x) * m3(x) * m5(x) *… * md0-2(x) } (7.2)


BCHX kodlari t karrali va undan kamroq erkin xatolarni to‘g‘rilaydigan siklik kodlarning katta sinfini tashkil etadi. BCHX kodlari uchun ham siklik kodlarning barcha asosiy xususiyatlari xos.


BCHX kodlari n, k, g(x) kattaliklari orqali aniqlanadi,
bu yerda: n - kodli kombinatsiyadagi elementlar miqdori;
k – BCHX kodining axborot elementlari miqdori;
g(x) –BCHX kodini keltirib chiqaradigan ko‘pxadi.
BCHX kodni kodlash quyidagidan iborat:
Zarur (x)=0…k-1 kod kombinatsiyasini xn-k razryadga chapga siljitib shu sonni olamiz
X n-k  (x)=X n-k (0 +…+ k-1X k-1)= 0 X n-1 +… k-1X n-1 (7.3)
 
Xn-k  (x) ko‘pxadini g(x)ga bo‘lamiz va bo‘linmani quyidagi ko‘rinishda yozamiz:
Xn-k  (x)=g(x)q(x)+r(x) ,
bu yerda q(x)- bo‘linma, r(x)- g(x) ga bo‘lingandagi qoldiq.
g(x) ko‘pxadining darajasi n-k ga teng ekan , r(x) ning darajasi n-k-1 ga teng bo‘ladi.

Bunda Xn-k(x) + r (x) = g(x) q(x), bu yerdan bo‘linadigan BCHX kodning izlangan kodli kombinatsiyasini olamiz .






  1. Download 54,01 Kb.

    Do'stlaringiz bilan baham:
  1   2   3




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish