Bayesian Logistic Regression Models for Credit Scoring by Gregg Webster



Download 2,26 Mb.
Pdf ko'rish
bet20/58
Sana08.07.2022
Hajmi2,26 Mb.
#757017
1   ...   16   17   18   19   20   21   22   23   ...   58
3.3.5 Logistic regression 
Ntzoufras (2009) explains that data encountered with a binary response are often modelled 
with logistic regression. Logistic regression is a special case of the Generalized Linear 
Models (GLMs). For credit scoring data, a response 
represents a default or “bad” 
score and a response 
represents no default or “good” score. Logistic regression 
makes use of the canonical link function, 
(
)
. The logistic regression model is given 
below 

) (
)

( )
for 

is the 
element in the 
i
th row and 
j
th column of the model matrix 

From this, the probability of default is given by 


)


)
.
Other link parameters are also possible to model binary response data, for example the 
probit and clog-log links.
The likelihood for the logistic regression model is 


36 
( | ) ∏
(
)
(3.13)

(


)


)
)
(


)
(

)
)

Estimation of the parameters for logistic regression can be done using the IRWLS 
procedure.
Parameter interpretation 
 
The parameters in logistic regression have an interpretation in terms of odds and odds 
ratios. Odds is defined as the relative probability of success (
) compared to the 
probability of failure (
)
when the data is binomial (Ntzoufras, 2009). Thus,
and the logistic regression model can be rewritten as
(
)

(
)

( )

Odds provides a number to multiply the probability of failure by in order to calculate the 
probability of success. 
can be interpreted as follows: a unit increase in 
with all the 
other 
’s held fixed increases the log-odds of success by 
or increases the odds of 
success by 
. This interpretation is a major advantage of logistic regression as no such 
simple interpretation exists for other link functions such as the probit.
In credit scoring, a success corresponds to a default or bad applicant. Thus, the log-odds of 
success is the log-odds of default in the context of credit scoring. Therefore, 
can be 
interpreted as follows: a unit increase in 
with all the other 
’s held fixed increases the 
log-odds of default by 
or increases the odds of default by 
. A positive value for 
thus increases the odds of default as 
increases, while a negative value for 
decreases 
the odds of default as 
increases.

Download 2,26 Mb.

Do'stlaringiz bilan baham:
1   ...   16   17   18   19   20   21   22   23   ...   58




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish