Basic Properties of Determinants



Download 20,66 Kb.
bet1/6
Sana07.01.2022
Hajmi20,66 Kb.
#329591
  1   2   3   4   5   6
Bog'liq
Basic Properties of Determinants


Basic Properties of Determinants 

Some basic properties of determinants are given below:



  1. If In is the identity matrix of the order m ×m, then det(I) is equal to1

  2. If the matrix XT is the transpose of matrix X, then det (XT) = det (X)

  3. If matrix X-1 is the inverse of matrix X, then det (X-1) = 1/det (x) = det(X)-1 

  4. If two square matrices x and y are of equal  size, then det (XY) = det (X) det (Y)

  5. If matrix X retains size a × a and C is a constant, then det (CX) = Ca det (X)

  6. If A, B, and C are three positive semidefinite matrices of equal size, then the following equation holds along with the corollary det (A+B) ≥ det(A) + det (B) for A,B, C ≥ 0 det (A+B+C) + det C ≥ det (A+B) + det (B+C)

  7. In a triangular matrix, the determinant is equal to the product of the diagonal elements.

  8. The determinant of a matrix is zero if each element of the matrix is equal to zero.

  9. Laplace’s Formula and the Adjugate Matrix.

 


Download 20,66 Kb.

Do'stlaringiz bilan baham:
  1   2   3   4   5   6




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish