MATEMATIKA FAKULTETI
AMALIY MATEMATIKA KAFEDRASI
AMALIY MATEMATIKA VA INFORMATIKA YO`NALISHI
2G – GURUH TALABASI XO`JAAXMADOVA IRODANING
MUTAXASISLIK AMALIYOTI HISOBOTI
Bajardi : Amaliy matematika va informatika ta’lim yo’nalishi 2G guruh talabasi
Xo`jaaxmadova Iroda
Tekshirdi: Utepbergenova G
Kriptografik usullar amaliyot
Mavzu: Elektron raqamli imzo
Ishning maqsadi: Elektron raqamli imzo haqida tushuncha olish
Nazariy ma`lumot: Elektron hujjatlarni tarmoq orqali almashishda ularni ishlash va saqlash harajatlari kamayadi, qidirish tezlashadi. Ammo elektron hujjat muallifini va hujjatning o`zini autentifikatsiyalash, ya`ni muallifning haqiqiyligini va olingan elektron hujjatda o`zgarishlarning yo`qligini aniqlash muammosi paydo bo`ladi. Elektron hujjatlarni autentifikatsiyalashdan maqsad ularni mumkin bo`lgan jinoyotkorona harakatlardan himoyalash. Elektron raqamli imzo metodologiyasi xabar yaxlitligini va xabar muallifining haqiqiyligini tekshirish muammosini samarali hal etishga imkon beradi. Elektron raqamli imzo telekommunikatsiya kanallari orqali uzatiluvchi matnlarni autentifikatsiyalash uchun ishlatiladi. Raqamli imzo ishlashi bo`yicha oddiy qo`lyozmaga o`xshash bo`lib, quyidagi afzalliklarga ega.
- imzo chekilgan matn imzo qo`ygan shaxsga tegishli ekanligini tasdiqlaydi;
- bu shaxsga imzo chekilgan matnga bog`liq majburiyatlaridan tonish imkoniyatini bermaydi;
- imzo chekilgan matn yaxlitligini kafolatlaydi
Elektron raqamli imzo – imzo chekiluvchi matn bilan birga uzatiluvchi qo`shimcha raqamli xabarning nisbatan katta bo`lmagan sonidir. Elektron raqamli imzo assimmetrik shifrlarning qaytaruvchanligiga hamda xabar tarkibi, imzoning o`zi va kalitlar juftining o`zaro bog`liqligiga asoslanadi. Bu elementlardan hatto birining o`zgarishi raqamli imzoning haqiqiyligini tasdiqlashga imkon bermaydi. Elektron raqamli shifrlashning assimmetrik algoritmlari va xesg-funksiyalar yordamida amalga oshiriladi. Elektron raqamli imzo tizimining qo`llanilishida bir-biriga imzo chekilgan elektron hujjatlarni jo`natuvchi abonent tarmog`ining mavjudligi faraz qilinadi. Har bir abonent uchun juft maxfiy va ochiq kalit generatsiyalanadi. Maxfiy kalit abonentda sir saqlanadi va undan abonent elektron raqamli imzoni shakllantirishda foydalanadi. Ochiq kalit boshqa barcha foydalanuvchilarga ma`lum bo`lib, undan imzo chekilgan elektron hujjatni qabul qiluvchi elektron raqamli imzoni tekshirishda foydalaniladi.
Elektron raqamli imzo tizimi quyidagi ikkita ishni amalga oshiradi:
- raqamli imzoni shakllantirish;
- raqamli imzoni tekshirish;
Imzoni shakllantirishda xabar jo`natuvchining maxfiy kaliti ishlatiladi, imzoni tekshirishda jo`natuvchining ochiq kalitidan foydalaniladi.
Raqamli imzoni shakllantirish. Xabar jo`natuvchi abonent ikkita kalitni generatsiyalaydi: maxfiy kalit kA va ochiq kalit KA. Ochiq kalit KA uning jufti bo`lgan maxfiy kaliti ka dan hisoblash orqali olinadi. Ochiq kalit KA tarmoqning boshqa abonentlariga imzoni tekshirishda foydalanish uchun tarqatiladi. Raqamli imzoni shakllantirish uchun jo`natuvchi A avvalo imzo chekiluvchi matn M ning xesh funksiyasi L(M) qiymatini hisoblaydi. Xesh funksiya imzo chekiluvchi dastlabki matn “M” ni dayjest “m”ga zichlashtirshga xizmat qiladi. Dayjest M – butun matn “M” ni xarakterlovchi bitlarning belgilamgan katta bo`lmagan sonidan iborat nisbatan qisqa sondir. So`ngra jo`natuvchi A o`zining maxfiy kaliti kA bilan dayjest “m” ni shifrlaydi. Natijada olingan sonlar jufti berilgan “M” matn uchun raqamli imzo hisoblanadi.
Elektron raqamni shakllantirish sxemasi
Amaliy topshiriq
P=Qoraqalpoq Davlat Universitet. k=8
Sezar usulidan foydalangan holda shifrlang.
Shifrlash jarayoni
Sezar usulining shifrlash tenglamasi quyidagicha:
Ci=Pi+k(mod26)
Dastlab foydalanayotgan alifbomizni 0 dan boshlab raqamlab chiqamiz so`ngra esa P ochiq matndagi har bir harfning alifbodagi tartib raqamini topib Pi ni o`rniga qo`yamiz. Shu tariqa hosil bo`lgan raqamning alifbodagi o`rnini topamiz. Quyida amallarni bajaramiz:
C0=P0+8(mod26)=16+8(mod26)=24.Alifbodagi24 raqamda turgn har bu – y;Shunday davom etamiz.
C1=14+8(mod26)=22 – w;
C2=17+8(mod26)=25 – z;
C3=0+8(mod26)=8 – I;
C4=16+8(mod26)=24 – y;
C5=0+8(mod26)=8 – I;
…
Matematik tizimlar fani amaliyot
Do'stlaringiz bilan baham: |