Article in International Journal of Entrepreneurship · December 2020 doi: 10. 4018/ijegcc. 2020070105 citations 11 reads 286 João Manuel Pereira Polytechnic Institute of Setúbal Instituto Politécnico de Lisboa 95


Figure 2. Evolution in % of the differences, of the eight financial markets, in the period from 31/12/2019 to 23/07/2020



Download 374,66 Kb.
bet9/9
Sana23.01.2022
Hajmi374,66 Kb.
#406409
1   2   3   4   5   6   7   8   9
Bog'liq
The Impact of the COVID 19 Pandemic on Stock Markets Evidence From

Figure 2. Evolution in % of the differences, of the eight financial markets, in the period from 31/12/2019 to 23/07/2020



Table 2. Descriptive statistics, on the returns, of the eight European financial markets from 31/12/2019 to 23/07/2020





ATG

CAC 40

DAX 30

FTSE 100

FTSE MID

IBEX 35

ISEQ

PSI 20

Mean

-0.001538

-0.000477

0.000467

-0.000692

-0.000197

-0.001036

4.30E-05

-0.000452

Std.Dev.

0.027084

0.021336

0.020510

0.019336

0.023779

0.022028

0.021069

0.017225

Skewness

-1.521235

-1.456190

-1.299364

-1.177540

-2.900081

-1.828632

-1.076405

-1.521948

Kurtosis

10.92967

11.74239

14.13378

11.50055

24.02861

15.09658

8.213614

13.94787

Jarque-Bera

598.1297***

704.0564***

1083.840***

645.1387***

3945.543***

1324.203

***

263.8107***



1070.629***

Observations

199

199

199

199

199

199

199

199

Source: Own elaboration

Table 3. Stationary test by Levin, Lin, and Chu (2002), applied to the eight European financial from 12/31/2019 to 07/23/2020


Method

Statistic

Prob.**




Cross-Sections

Obs

Null:Unitroot(assumescommonunitrootprocess)













Levin,Lin&Chut*

-42.3461

0.0000

8




1582

Null:Unitroot(assumesindividualunitrootprocess)













Im,PesaranandShinW-stat

-36.1778

0.0000

8




1582

ADF-FisherChi-square

726.350

0.0000

8




1582

PP-FisherChi-square

852.623

0.0000

8




1584

Source: Own elaboration

Note: ** Probabilities for Fisher tests are computed using an asymptotic Chi-square distribution. All other tests assume asymptotic normality.

thenumberoflagstoincludeinthecausalitytests,theauthorsusedtheHQ(Hannan-Quinninformation criterion)criterionthatsuggeststwolags(seetable7).

Figure4showstheautocorrelationintheresidueswithtwolagsinthefinancialmarkets,which isnotobservedinthecaseoftheCOVID-19dataseries(confirmedcasesanddeaths).Asmaller numberoflagsincreasesthedegreesoffreedom.Amoresignificantnumberoflagsdecreasesthe problemsofautocorrelation.Beingthisthecase,theauthorsestimatedaVARwithfourlagsforthe dataseriesoftheEuropeanfinancialmarkets.

InTable8,onecanobservetheresultsoftheVARResidualSerialCorrelationLMTests.The authorsperformedaVARestimationwithfourlags,followedbytheautocorrelationtestatfivelags. Thenullhypothesiswasnotrejected,whichprovesthatthemodeldoesnotpresentautocorrelation inresidues,indicatingthatitpresentsarobustestimation.

TheresultsofGranger’scausalitytestsareshownintable9,bothreferringtoCOVID-19data (confirmedcasesanddeaths)andthefinancialmarketsunderanalysis.Thecausalitytestsshowtwo bi-directionalcausalrelationshipsbetweenconfirmedcasesanddeathsfromtheCOVID-19virus.

However,therewerenoshocksbetweenCOVID-19data(casesanddeaths)andfinancialmarkets. Thefactthattheevolutionoftheglobalpandemic(COVID-19)didnotcauseshocksinEurope’s financialmarketsduringthisperiodofanalysisdoesnotvalidatethefirstresearchquestioninour studyand,therefore,contradictstheresultsoftheauthorAshraf(2020),whoobservedthatthestock marketsreactednegativelytothegrowthofconfirmedcasesofCOVID-19.Inotherwords,thereturns onthestockmarketsdecreasedasthenumberofconfirmedcasesincreased.

Table10depictstheresultsoftheexponentsDetrendedFluctuationAnalysis(DFA),andone canobservethatEurope’sfinancialmarketsshowsignificantlong-termmemories,rangingfrom 0.61-0.73.Thesefindingsshowthatpricesdonotfullyreflecttheinformationavailableandthat changesinpricesarenoti.i.d.Thissituationhasimplicationsforinvestors,sincesomereturnscan


Table 4. ADF Stationarity test - Fisher Chi-square, applied to eight European Markets in the period from 31/12/2019 to 23/07/2020





Method

Statistic

Prob.**

ADF-F

isherChi-square

726.350

0.0000

ADF

-ChoiZ-stat

-25.7229

0.0000

Inte

rmediateADFtestresultsUNTITLED







Series

Prob.

Lag

Max Lag

Obs

ATG

0.0000

0

14

198

CAC40

0.0000

0

14

198

DAX30

0.0000

0

14

198

FTSE100

0.0000

0

14

198

FTSEMID

0.0000

1

14

197

IBEX35

0.0000

1

14

197

ISEQ

0.0000

0

14

198

PSI20

0.0000

0

14

198

Source: Own elaboration

Note: ** Probabilities for Fisher tests are computed using an asymptotic Chi-square distribution. All other tests assume asymptotic normality.



beexpected,creatingopportunitiesforarbitrageandabnormalearnings,contrarytoassumedby thehypothesesofrandomwalkandinformationalefficiency,thusvalidatingoursecondresearch question.TheseresultsarecorroboratedbytheauthorsAggarwal(2018),Rehman,Chhapra,Kashif, andRehan(2018),Pernagallo,andTorrisi(2019),whohighlightlong-termmemoriesofthereturns onthestockmarkets.

Table 5. PP Stationarity test - Fisher Chi-square, applied to the eight European financial markets in the period from 31/12/2019 to 23/07/2020


Method

Statistic

Prob.**

PP-FisherChi-square

852.623

0.0000

PP-ChoiZ-stat

-28.2955

0.0000

IntermediatePhillips-PerrontestresultsUNTITLED




Series

Prob.

Bandwidth

Obs

ATG

0.0000

4.0

198

CAC40

0.0000

6.0

198

DAX30

0.0000

6.0

198

FTSE100

0.0000

5.0

198

FTSEMID

0.0000

7.0

198

IBEX35

0.0000

6.0

198

ISEQ

0.0000

6.0

198

PSI20

0.0000

6.0

198

Source: Own elaboration

Note: ** Probabilities for Fisher tests are computed using an asymptotic Chi-squar distribution. All other tests assume asymptotic normality.


Figure 3. Stability tests of the residues of the eight European financial markets, in the period from 31/12/2019 to 23/07/2020



Table 6. Unit root tests with structural breaks by Clemente et al. (1998), in returns, referring to the eight financial markets in Europe, in the period from 12/31/2019 to 07/23/2020


Index

t-Stat

Break Date

ATG

-12.57(0)***

05/02/2020

CAC40

-13.53(0)***

31/03/2020

DAX30

-12.82(0)***

10/03/2020

FTSE100

-13.91(0)***

12/03/2020

FTSEMID

-14.61(0)***

17/03/2020

IBEX35

-13.12(0)***

02/04/2020

ISEQ

-12.46(0)***

19/03/2020

PSI20

-13.19(0)***

26/03/2020

Source: Own elaboration

Note: Lag Lenght (Automatic Length based on SIC). Break Selection: Minimize Dickey-Fuller t-statistic. The lateral values in parentheses refer to lags. ***. **. *. represent significance at 1%. 5% and 10%. respectively.


Table 7. VAR Lag Order Selection Criteria


Lag

LogL

LR

FPE

AIC

SC

HQ

2

5552.948

423.7915

2.41e-37

-55.94710

-52.37130

-54.49874*

Source: Own elaboration

Figure 4. VAR Residuals Test



Table 8. VAR Residual Serial Correlation LM Tests


Lag

LRE* stat

df

Prob.

Rao F-stat

df

Prob.

1

205.3774

100

0.0000

2.165009

(100,978.4)

0.0000

2

132.8881

100

0.0155

1.350990

(100,978.4)

0.0158

3

165.5520

100

0.0000

1.710690

(100,978.4)

0.0000

4

134.4604

100

0.0123

1.368044

(100,978.4)

0.0125

5

103.2714

100

0.3913

1.034586

(100, 978.4)

0.3935

Source: Own elaboration

Table 9. Granger Casuality Tests / Block Exogeneity Wald Tests, in the Full Period





COVID-19 (casos)

COVID-19 (mortes)

COVID-19(casos)

********

3.84(4)***

COVID-19(mortes)

16.02(4)***

********

ATG

0.02(4)

0.06(4)

CAC40

0.11(4)

0.10(4)

DAX30

0.08(4)

0.04(4)

FTSE100

0.13(4)

0.09(4)

FTSEMID

0.10(4)

0.02(4)

IBEX35

0.12(4)

0.04(4)

ISEQ

0.28(4)

0.17(4)

PSI20

0.34(4)

0.18(4)

Source: Own elaboration

Note: The markets in columns “cause” the markets in line. The lateral values in parentheses refer to lags. ***. **. *. represent significance at 1%. 5% and 10%. respectively.


Table 10. DFA exponent for return. The values of the linear adjustments for αDFA always had R2 > 0.99


Index




DFA Exponent (COVID-19)

ATG

0.68≌0.0125




CAC40

0.68≌0.0005




DAX30

0.72≌0.0017




FTSE100

0.61≌0.0035




FTSEMID

0.70≌0.0032




IBEX35

0.69≌0.0030




ISEQ

0.69≌0.0011




PSI20

0.73≌0.0025




Source: Own elaboration

Note: The hypotheses are H0 α = 0.5 and H1 α ≠ 0.5


CONCLUSION


Knowinghowsensitivityandvulnerablefinancialmarketsaretounexpectedstructuralandcontextual changesisarelevantmatterofstudy.Byunderstandingthecausalrelationshipbetweenthesechanges andthebehaviorofthesemarkets,itispossibletocreate,inadvance,mitigationmechanismsthat cancontributeinsomewaytoreducethepossibledevastatingeffectsontheinterestsofthevarious stakeholders.DuetothedisruptiveandsevereeffectofCOVID-19ontheeconomy,itisvitaltostudy thisphenomenonwiththesamepurposeinmind.

Therefore,theaimofthisstudywastotestwhethertheevolutionofCOVID-19(confirmed casesanddeaths)causedshocksinthestockmarketsofGreece(ATG),France(CAC40),Germany

(DAX30),UnitedKingdom(FTSE100),Italy(FTSEMID),Spain(IBEX35),Ireland(ISEQ),and Portugal(PSI20),intheperiodfromDecember31,2019,toJuly23,2020.Theunderlyinganalysis hasbeenconductedbasedontworesearchquestionstoconfirmthispossibility:Doestheincrease inthenumberofCOVID-19casesanddeathsshockEurope’sfinancialmarkets?Ifso,couldthe presenceoflongmemoriescauseincreasedlevelsofarbitration?

Sincetheunderlyingresearchproblempertainstoarecentphenomenon,theCOVID-19outbreak, theliteraturereviewisbasedonrecentarticlespublishedin2020regardingtheglobalpandemic, withaconsiderableABSRanking.Basedonthisfact,theauthorsunderstandthatitisnotpossible toprovidealiteraturereviewthatgoesbeyondthepresentedtimespanoftheunderlyingresearch topic,astherearenone.NohealthissueliketheCOVID-19pandemichashadintherecentpastsuch adisastrousimpactontheglobaleconomies.

Thefirsttestresultsshowtwobi-directionalcausalrelationshipsbetweenconfirmedcasesand deathsfromtheCOVID-19virus.However,noshocksbetweenCOVID-19data(casesanddeaths) andfinancialmarketswereevidenced.Theseresultssuggestthattheevolutionoftheglobalpandemic (COVID-19)didnotcauseshocksinEurope’sfinancialmarketsduringtheperiodinwhichthe analysiswasperformed.Therefore,basedontheseresults,thefirstresearchquestionwasrejected.

TheresultsoftheobtainedexponentsDetrendedFluctuationAnalysis(DFA)showsignificant longmemoriesintheEuropeanfinancialmarkets,rangingbetween0.61-0.73.Thesefindingsshow thatpricesdonotfullyreflecttheinformationavailableandthatchangesinpricesarenoti.i.d.This situationhasimplicationsforinvestors,sincesomereturnscanbeexpected,creatingopportunities forarbitrageandabnormalearningsthatcontradicttheassumedbythehypothesesofrandomwalk andinformationalefficiency,thusvalidatingthesecondresearchquestion.

Thegeneralconclusiondrawnandsustainedbytheresultsobtainedthroughthetestscarriedout witheconometricandmathematicalmodelsdemonstratesthattheglobalpandemiccreatedturbulence andpessimisminthefinancialmarketsduetouncertaintyandlackofconfidence.Inreturn,these effectsledtosignificantstructuralbreaks.However,whentheauthorstestedtheCOVID-19data series(confirmedcasesanddeaths),thecausalitytestsshowedtwobidirectionalcausalrelationships betweenconfirmedcasesanddeathsresultingfromtheCOVID-19virus.However,therewereno shocksbetweenCOVID-19data(casesanddeaths)andfinancialmarkets,orrathernodirectcausalities betweentheevolutionofCOVID-19andEurope’sfinancialmarkets’profitabilitywasobserved.The memorypropertiesofthesestockmarketsshowpersistenceinreturns,whichrejectsthehypothesis ofmarketefficiencyinitsweakform.Ourstudy’sconclusionsshedlightonmarketregulatorsto ensurebetterinformationamonginternationalfinancialmarkets.Inconclusion,theauthorsbelieve thatinvestorsshoulddiversifytheirportfoliosandinvestinlessriskymarketstomitigateriskand improvetheirportfolios’efficiency.

Finally,thisresearchhasusedgeneralindicesofadailyfrequencytoanalyzetheglobalpandemic’s impactontheanalyzedfinancialmarkets(firstwave).Inthefutureitwouldalsobeinterestingto analyzetheimpactofthesecondwaveofCovid-19ontheanalyzedmarketsusingintradaydata, quotesperminute,aswellasaddingvariablessuchasunemployment,GDP,tocheckwhethermarket fluctuationsaresynchronizedwithmacroeconomicvariables.


REFERENCES


Aggarwal,D.(2018).RandomwalkmodelandasymmetriceffectinKoreancompositestockpriceindex.AfroAsianJ.ofFinanceandAccounting.doi:10.1504/AAJFA.2018.10009906

Akhtaruzzaman,M.,Boubaker,S.,Lucey,B.M.,&Sensoy,A.(2020).IsGoldaHedgeorSafeHavenAsset duringCOVID–19Crisis?SSRNElectronic Journal.10.2139/ssrn.3621358

Ali,M.,Alam,N.,&Rizvi,S.A.R.(2020).Coronavirus(COVID-19)—Anepidemicorpandemicforfinancial markets.Journal of Behavioral and Experimental Finance,27,100341.Advanceonlinepublication.doi:10.1016/j. jbef.2020.100341PMID:32427215

Ashraf,B.N.(2020).Stockmarkets’reactiontoCOVID-19:Casesorfatalities?Research in International Business and Finance,54,101249.Advanceonlinepublication.doi:10.1016/j.ribaf.2020.101249

Clemente,J.,Montañés,A.,&Reyes,M.(1998).Testingforaunitrootinvariableswithadoublechangeinthe

mean.Economics Letters,59(2),175–182.doi:10.1016/S0165-1765(98)00052-4

Dias,R.,daSilva,J.V.,&Dionísio,A.(2019).FinancialmarketsoftheLACregion:Doesthecrisisinfluence thefinancialintegration?International Review of Financial Analysis,63(January),160–173.doi:10.1016/j. irfa.2019.02.008

Dias,R.,Heliodoro,P.,Teixeira,N.,&Godinho,T.(2020).Testing the Weak Form of Efficient Market Hypothesis : Empirical Evidence from Equity Markets.10.11648/j.ijafrm.20200501.14

Dickey,D.,&Fuller,W.(1981).Likelihoodratiostatisticsforautoregressivetimeserieswithaunitroot. Econometrica,49(4),1057–1072.doi:10.2307/1912517

Ferreira,P.,Dionísio,A.,Guedes,E.F.,&Zebende,G.F.(2018).Aslidingwindowsapproachtoanalysethe evolutionofbanksharesintheEuropeanUnion.Physica A,490,1355–1367.doi:10.1016/j.physa.2017.08.095

Gujarati,D.N.(2004).Basic Econometrics.doi:10.1126/science.1186874

Gunay,S.(2020).ANewFormofFinancialContagion:COVID-19andStockMarketResponses.SSRN



Electronic Journal.10.2139/ssrn.3584243

He,Q.,Liu,J.,Wang,S.,&Yu,J.(2020).TheimpactofCOVID-19onstockmarkets.Economic and Political Studies,8(3),275–288.Advanceonlinepublication.doi:10.1080/20954816.2020.1757570

Jarque,C.M.,&Bera,A.K.(1980).Efficienttestsfornormality,homoscedasticityandserialindependenceof regressionresiduals.Economics Letters,6(3),255–259.doi:10.1016/0165-1765(80)90024-5

Kantelhardt,J.W.,Koscielny-Bunde,E.,Rego,H.H.,Havlin,S.,&Bunde,A.(2001).Detectinglongrangecorrelationswithdetrendedfluctuationanalysis.Physica A,295(3–4),441–454.doi:10.1016/S03784371(01)00144-3

Levin,A.,Lin,C.F.,&Chu,C.S.J.(2002).Unitroottestsinpaneldata:Asymptoticandfinite-sampleproperties. Journal of Econometrics,108(1),1–24.Advanceonlinepublication.doi:10.1016/S0304-4076(01)00098-7 Liu,H.,Manzoor,A.,Wang,C.,Zhang,L.,&Manzoor,Z.(2020).TheCOVID-19outbreakandaffected countriesstockmarketsresponse.International Journal of Environmental Research and Public Health,17(8), 2800.Advanceonlinepublication.doi:10.3390/ijerph17082800PMID:32325710

Okorie,D.I.,&Lin,B.(2020).StockmarketsandtheCOVID-19fractalcontagioneffects.Finance Research Letters,101640.Advanceonlinepublication.doi:10.1016/j.frl.2020.101640PMID:32837366

Peng,C.K.,Buldyrev,S.V.,Havlin,S.,Simons,M.,Stanley,H.E.,&Goldberger,A.L.(1994).Mosaic organizationofDNAnucleotides.Physical Review. E,49(2),1685–1689.doi:10.1103/PhysRevE.49.1685 PMID:9961383

Pernagallo,G.,&Torrisi,B.(2019).AnempiricalanalysisonthedegreeofGaussianityandlongmemoryof financialreturnsinemergingeconomies.Physica A,527,121296.Advanceonlinepublication.doi:10.1016/j.

physa.2019.121296 Perron,P.,&Phillips,P.C.B.(1988).TestingforaUnitRootinaTimeSeriesRegression.Biometrika,2(75), 335–346.doi:10.1080/07350015.1992.10509923

Rehman,S.,Chhapra,I.U.,Kashif,M.,&Rehan,R.(2018).Are Stock Prices a Random Walk? An Empirical Evidence of Asian Stock Markets.ETIKONOMI.doi:10.15408/etk.v17i2.7102

RuizEstrada,M.A.,Park,D.,Koutronas,E.,Khan,A.,&Tahir,M.(2020).TheImpactofInfectiousand ContagiousDiseasesandItsImpactontheEconomicPerformance:TheCaseofWuhan,China.SSRNElectronic

Journal.10.2139/ssrn.3527330

Sansa,N.A.(2020).TheImpactoftheCOVID-19ontheFinancialMarkets:EvidencefromChinaandUSA. SSRNElectronic Journal.10.2139/ssrn.3567901

Yan,B.,Logan,S.,Tu,A.,&Zhang,T.(2020).AnalysisoftheEffectofCOVID-19ontheStockMarketand PotentialInvestingStrategies.SSRNElectronic Journal.

Zeren,F.,&Hizarci,A.(2020).The impact of COVID-19 coronavirus on stock markets: Evidence from selected countries.MuhasebeveFinansİncelemeleriDergisi.,doi:10.32951/mufider.706159

Zhang,D.,Hu,M.,&Ji,Q.(2020).FinancialmarketsundertheglobalpandemicofCOVID-19.Finance Research Letters,36,101528.Advanceonlinepublication.doi:10.1016/j.frl.2020.101528PMID:32837360

Rui Manuel Teixeira Santos Dias holds a Ph.D. in Finance from the University of Évora - Institute for Advanced Studies and Research. He is an Adjunct Professor at the Polytechnic Institute of Setúbal, School of Business Administration and Researcher at the University of Évora (CEFAGE).

João Pereira holds a Ph. D. in Management with a specialization in Marketing from the Universidade Aberta and is a visiting professor in his area of specialization at the Higher Institute of Accounting and Administration of the Lisbon Polytechnic Institute, and at the Universidade Aberta, Portugal.

View publication stats




Download 374,66 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish