Figure 2. Evolution in % of the differences, of the eight financial markets, in the period from 31/12/2019 to 23/07/2020
Table 2. Descriptive statistics, on the returns, of the eight European financial markets from 31/12/2019 to 23/07/2020
|
ATG
|
CAC 40
|
DAX 30
|
FTSE 100
|
FTSE MID
|
IBEX 35
|
ISEQ
|
PSI 20
|
Mean
|
-0.001538
|
-0.000477
|
0.000467
|
-0.000692
|
-0.000197
|
-0.001036
|
4.30E-05
|
-0.000452
|
Std.Dev.
|
0.027084
|
0.021336
|
0.020510
|
0.019336
|
0.023779
|
0.022028
|
0.021069
|
0.017225
|
Skewness
|
-1.521235
|
-1.456190
|
-1.299364
|
-1.177540
|
-2.900081
|
-1.828632
|
-1.076405
|
-1.521948
|
Kurtosis
|
10.92967
|
11.74239
|
14.13378
|
11.50055
|
24.02861
|
15.09658
|
8.213614
|
13.94787
|
Jarque-Bera
|
598.1297***
|
704.0564***
|
1083.840***
|
645.1387***
|
3945.543***
|
1324.203
|
***
263.8107***
|
1070.629***
|
Observations
|
199
|
199
|
199
|
199
|
199
|
199
|
199
|
199
|
Source: Own elaboration
Table 3. Stationary test by Levin, Lin, and Chu (2002), applied to the eight European financial from 12/31/2019 to 07/23/2020 -
Method
|
Statistic
|
Prob.**
|
|
Cross-Sections
|
Obs
|
Null:Unitroot(assumescommonunitrootprocess)
|
|
|
|
|
Levin,Lin&Chut*
|
-42.3461
|
0.0000
|
8
|
|
1582
|
Null:Unitroot(assumesindividualunitrootprocess)
|
|
|
|
|
Im,PesaranandShinW-stat
|
-36.1778
|
0.0000
|
8
|
|
1582
|
ADF-FisherChi-square
|
726.350
|
0.0000
|
8
|
|
1582
|
PP-FisherChi-square
|
852.623
|
0.0000
|
8
|
|
1584
|
Source: Own elaboration
Note: ** Probabilities for Fisher tests are computed using an asymptotic Chi-square distribution. All other tests assume asymptotic normality.
thenumberoflagstoincludeinthecausalitytests,theauthorsusedtheHQ(Hannan-Quinninformation criterion)criterionthatsuggeststwolags(seetable7).
Figure4showstheautocorrelationintheresidueswithtwolagsinthefinancialmarkets,which isnotobservedinthecaseoftheCOVID-19dataseries(confirmedcasesanddeaths).Asmaller numberoflagsincreasesthedegreesoffreedom.Amoresignificantnumberoflagsdecreasesthe problemsofautocorrelation.Beingthisthecase,theauthorsestimatedaVARwithfourlagsforthe dataseriesoftheEuropeanfinancialmarkets.
InTable8,onecanobservetheresultsoftheVARResidualSerialCorrelationLMTests.The authorsperformedaVARestimationwithfourlags,followedbytheautocorrelationtestatfivelags. Thenullhypothesiswasnotrejected,whichprovesthatthemodeldoesnotpresentautocorrelation inresidues,indicatingthatitpresentsarobustestimation.
TheresultsofGranger’scausalitytestsareshownintable9,bothreferringtoCOVID-19data (confirmedcasesanddeaths)andthefinancialmarketsunderanalysis.Thecausalitytestsshowtwo bi-directionalcausalrelationshipsbetweenconfirmedcasesanddeathsfromtheCOVID-19virus.
However,therewerenoshocksbetweenCOVID-19data(casesanddeaths)andfinancialmarkets. Thefactthattheevolutionoftheglobalpandemic(COVID-19)didnotcauseshocksinEurope’s financialmarketsduringthisperiodofanalysisdoesnotvalidatethefirstresearchquestioninour studyand,therefore,contradictstheresultsoftheauthorAshraf(2020),whoobservedthatthestock marketsreactednegativelytothegrowthofconfirmedcasesofCOVID-19.Inotherwords,thereturns onthestockmarketsdecreasedasthenumberofconfirmedcasesincreased.
Table10depictstheresultsoftheexponentsDetrendedFluctuationAnalysis(DFA),andone canobservethatEurope’sfinancialmarketsshowsignificantlong-termmemories,rangingfrom 0.61-0.73.Thesefindingsshowthatpricesdonotfullyreflecttheinformationavailableandthat changesinpricesarenoti.i.d.Thissituationhasimplicationsforinvestors,sincesomereturnscan
Table 4. ADF Stationarity test - Fisher Chi-square, applied to eight European Markets in the period from 31/12/2019 to 23/07/2020
|
Method
|
Statistic
|
Prob.**
|
ADF-F
|
isherChi-square
|
726.350
|
0.0000
|
ADF
|
-ChoiZ-stat
|
-25.7229
|
0.0000
|
Inte
|
rmediateADFtestresultsUNTITLED
|
|
|
Series
|
Prob.
|
Lag
|
Max Lag
|
Obs
|
ATG
|
0.0000
|
0
|
14
|
198
|
CAC40
|
0.0000
|
0
|
14
|
198
|
DAX30
|
0.0000
|
0
|
14
|
198
|
FTSE100
|
0.0000
|
0
|
14
|
198
|
FTSEMID
|
0.0000
|
1
|
14
|
197
|
IBEX35
|
0.0000
|
1
|
14
|
197
|
ISEQ
|
0.0000
|
0
|
14
|
198
|
PSI20
|
0.0000
|
0
|
14
|
198
|
Source: Own elaboration
Note: ** Probabilities for Fisher tests are computed using an asymptotic Chi-square distribution. All other tests assume asymptotic normality.
beexpected,creatingopportunitiesforarbitrageandabnormalearnings,contrarytoassumedby thehypothesesofrandomwalkandinformationalefficiency,thusvalidatingoursecondresearch question.TheseresultsarecorroboratedbytheauthorsAggarwal(2018),Rehman,Chhapra,Kashif, andRehan(2018),Pernagallo,andTorrisi(2019),whohighlightlong-termmemoriesofthereturns onthestockmarkets.
Table 5. PP Stationarity test - Fisher Chi-square, applied to the eight European financial markets in the period from 31/12/2019 to 23/07/2020
Method
|
Statistic
|
Prob.**
|
PP-FisherChi-square
|
852.623
|
0.0000
|
PP-ChoiZ-stat
|
-28.2955
|
0.0000
|
IntermediatePhillips-PerrontestresultsUNTITLED
|
|
Series
|
Prob.
|
Bandwidth
|
Obs
|
ATG
|
0.0000
|
4.0
|
198
|
CAC40
|
0.0000
|
6.0
|
198
|
DAX30
|
0.0000
|
6.0
|
198
|
FTSE100
|
0.0000
|
5.0
|
198
|
FTSEMID
|
0.0000
|
7.0
|
198
|
IBEX35
|
0.0000
|
6.0
|
198
|
ISEQ
|
0.0000
|
6.0
|
198
|
PSI20
|
0.0000
|
6.0
|
198
|
Source: Own elaboration
Note: ** Probabilities for Fisher tests are computed using an asymptotic Chi-squar distribution. All other tests assume asymptotic normality.
Figure 3. Stability tests of the residues of the eight European financial markets, in the period from 31/12/2019 to 23/07/2020
Table 6. Unit root tests with structural breaks by Clemente et al. (1998), in returns, referring to the eight financial markets in Europe, in the period from 12/31/2019 to 07/23/2020
Index
|
t-Stat
|
Break Date
|
ATG
|
-12.57(0)***
|
05/02/2020
|
CAC40
|
-13.53(0)***
|
31/03/2020
|
DAX30
|
-12.82(0)***
|
10/03/2020
|
FTSE100
|
-13.91(0)***
|
12/03/2020
|
FTSEMID
|
-14.61(0)***
|
17/03/2020
|
IBEX35
|
-13.12(0)***
|
02/04/2020
|
ISEQ
|
-12.46(0)***
|
19/03/2020
|
PSI20
|
-13.19(0)***
|
26/03/2020
|
Source: Own elaboration
Note: Lag Lenght (Automatic Length based on SIC). Break Selection: Minimize Dickey-Fuller t-statistic. The lateral values in parentheses refer to lags. ***. **. *. represent significance at 1%. 5% and 10%. respectively.
Lag
|
LogL
|
LR
|
FPE
|
AIC
|
SC
|
HQ
|
2
|
5552.948
|
423.7915
|
2.41e-37
|
-55.94710
|
-52.37130
|
-54.49874*
|
Source: Own elaboration
Figure 4. VAR Residuals Test
Table 8. VAR Residual Serial Correlation LM Tests
Lag
|
LRE* stat
|
df
|
Prob.
|
Rao F-stat
|
df
|
Prob.
|
1
|
205.3774
|
100
|
0.0000
|
2.165009
|
(100,978.4)
|
0.0000
|
2
|
132.8881
|
100
|
0.0155
|
1.350990
|
(100,978.4)
|
0.0158
|
3
|
165.5520
|
100
|
0.0000
|
1.710690
|
(100,978.4)
|
0.0000
|
4
|
134.4604
|
100
|
0.0123
|
1.368044
|
(100,978.4)
|
0.0125
|
5
|
103.2714
|
100
|
0.3913
|
1.034586
|
(100, 978.4)
|
0.3935
|
Source: Own elaboration
Table 9. Granger Casuality Tests / Block Exogeneity Wald Tests, in the Full Period
|
COVID-19 (casos)
|
COVID-19 (mortes)
|
COVID-19(casos)
|
********
|
3.84(4)***
|
COVID-19(mortes)
|
16.02(4)***
|
********
|
ATG
|
0.02(4)
|
0.06(4)
|
CAC40
|
0.11(4)
|
0.10(4)
|
DAX30
|
0.08(4)
|
0.04(4)
|
FTSE100
|
0.13(4)
|
0.09(4)
|
FTSEMID
|
0.10(4)
|
0.02(4)
|
IBEX35
|
0.12(4)
|
0.04(4)
|
ISEQ
|
0.28(4)
|
0.17(4)
|
PSI20
|
0.34(4)
|
0.18(4)
|
Source: Own elaboration
Note: The markets in columns “cause” the markets in line. The lateral values in parentheses refer to lags. ***. **. *. represent significance at 1%. 5% and 10%. respectively.
Table 10. DFA exponent for return. The values of the linear adjustments for αDFA always had R2 > 0.99 -
Index
|
|
DFA Exponent (COVID-19)
|
ATG
|
0.68≌0.0125
|
|
CAC40
|
0.68≌0.0005
|
|
DAX30
|
0.72≌0.0017
|
|
FTSE100
|
0.61≌0.0035
|
|
FTSEMID
|
0.70≌0.0032
|
|
IBEX35
|
0.69≌0.0030
|
|
ISEQ
|
0.69≌0.0011
|
|
PSI20
|
0.73≌0.0025
|
|
Source: Own elaboration
Note: The hypotheses are H0 α = 0.5 and H1 α ≠ 0.5
CONCLUSION
Knowinghowsensitivityandvulnerablefinancialmarketsaretounexpectedstructuralandcontextual changesisarelevantmatterofstudy.Byunderstandingthecausalrelationshipbetweenthesechanges andthebehaviorofthesemarkets,itispossibletocreate,inadvance,mitigationmechanismsthat cancontributeinsomewaytoreducethepossibledevastatingeffectsontheinterestsofthevarious stakeholders.DuetothedisruptiveandsevereeffectofCOVID-19ontheeconomy,itisvitaltostudy thisphenomenonwiththesamepurposeinmind.
Therefore,theaimofthisstudywastotestwhethertheevolutionofCOVID-19(confirmed casesanddeaths)causedshocksinthestockmarketsofGreece(ATG),France(CAC40),Germany
(DAX30),UnitedKingdom(FTSE100),Italy(FTSEMID),Spain(IBEX35),Ireland(ISEQ),and Portugal(PSI20),intheperiodfromDecember31,2019,toJuly23,2020.Theunderlyinganalysis hasbeenconductedbasedontworesearchquestionstoconfirmthispossibility:Doestheincrease inthenumberofCOVID-19casesanddeathsshockEurope’sfinancialmarkets?Ifso,couldthe presenceoflongmemoriescauseincreasedlevelsofarbitration?
Sincetheunderlyingresearchproblempertainstoarecentphenomenon,theCOVID-19outbreak, theliteraturereviewisbasedonrecentarticlespublishedin2020regardingtheglobalpandemic, withaconsiderableABSRanking.Basedonthisfact,theauthorsunderstandthatitisnotpossible toprovidealiteraturereviewthatgoesbeyondthepresentedtimespanoftheunderlyingresearch topic,astherearenone.NohealthissueliketheCOVID-19pandemichashadintherecentpastsuch adisastrousimpactontheglobaleconomies.
Thefirsttestresultsshowtwobi-directionalcausalrelationshipsbetweenconfirmedcasesand deathsfromtheCOVID-19virus.However,noshocksbetweenCOVID-19data(casesanddeaths) andfinancialmarketswereevidenced.Theseresultssuggestthattheevolutionoftheglobalpandemic (COVID-19)didnotcauseshocksinEurope’sfinancialmarketsduringtheperiodinwhichthe analysiswasperformed.Therefore,basedontheseresults,thefirstresearchquestionwasrejected.
TheresultsoftheobtainedexponentsDetrendedFluctuationAnalysis(DFA)showsignificant longmemoriesintheEuropeanfinancialmarkets,rangingbetween0.61-0.73.Thesefindingsshow thatpricesdonotfullyreflecttheinformationavailableandthatchangesinpricesarenoti.i.d.This situationhasimplicationsforinvestors,sincesomereturnscanbeexpected,creatingopportunities forarbitrageandabnormalearningsthatcontradicttheassumedbythehypothesesofrandomwalk andinformationalefficiency,thusvalidatingthesecondresearchquestion.
Thegeneralconclusiondrawnandsustainedbytheresultsobtainedthroughthetestscarriedout witheconometricandmathematicalmodelsdemonstratesthattheglobalpandemiccreatedturbulence andpessimisminthefinancialmarketsduetouncertaintyandlackofconfidence.Inreturn,these effectsledtosignificantstructuralbreaks.However,whentheauthorstestedtheCOVID-19data series(confirmedcasesanddeaths),thecausalitytestsshowedtwobidirectionalcausalrelationships betweenconfirmedcasesanddeathsresultingfromtheCOVID-19virus.However,therewereno shocksbetweenCOVID-19data(casesanddeaths)andfinancialmarkets,orrathernodirectcausalities betweentheevolutionofCOVID-19andEurope’sfinancialmarkets’profitabilitywasobserved.The memorypropertiesofthesestockmarketsshowpersistenceinreturns,whichrejectsthehypothesis ofmarketefficiencyinitsweakform.Ourstudy’sconclusionsshedlightonmarketregulatorsto ensurebetterinformationamonginternationalfinancialmarkets.Inconclusion,theauthorsbelieve thatinvestorsshoulddiversifytheirportfoliosandinvestinlessriskymarketstomitigateriskand improvetheirportfolios’efficiency.
Finally,thisresearchhasusedgeneralindicesofadailyfrequencytoanalyzetheglobalpandemic’s impactontheanalyzedfinancialmarkets(firstwave).Inthefutureitwouldalsobeinterestingto analyzetheimpactofthesecondwaveofCovid-19ontheanalyzedmarketsusingintradaydata, quotesperminute,aswellasaddingvariablessuchasunemployment,GDP,tocheckwhethermarket fluctuationsaresynchronizedwithmacroeconomicvariables.
REFERENCES
Aggarwal,D.(2018).RandomwalkmodelandasymmetriceffectinKoreancompositestockpriceindex.AfroAsianJ.ofFinanceandAccounting.doi:10.1504/AAJFA.2018.10009906
Akhtaruzzaman,M.,Boubaker,S.,Lucey,B.M.,&Sensoy,A.(2020).IsGoldaHedgeorSafeHavenAsset duringCOVID–19Crisis?SSRNElectronic Journal.10.2139/ssrn.3621358
Ali,M.,Alam,N.,&Rizvi,S.A.R.(2020).Coronavirus(COVID-19)—Anepidemicorpandemicforfinancial markets.Journal of Behavioral and Experimental Finance,27,100341.Advanceonlinepublication.doi:10.1016/j. jbef.2020.100341PMID:32427215
Ashraf,B.N.(2020).Stockmarkets’reactiontoCOVID-19:Casesorfatalities?Research in International Business and Finance,54,101249.Advanceonlinepublication.doi:10.1016/j.ribaf.2020.101249
Clemente,J.,Montañés,A.,&Reyes,M.(1998).Testingforaunitrootinvariableswithadoublechangeinthe
mean.Economics Letters,59(2),175–182.doi:10.1016/S0165-1765(98)00052-4
Dias,R.,daSilva,J.V.,&Dionísio,A.(2019).FinancialmarketsoftheLACregion:Doesthecrisisinfluence thefinancialintegration?International Review of Financial Analysis,63(January),160–173.doi:10.1016/j. irfa.2019.02.008
Dias,R.,Heliodoro,P.,Teixeira,N.,&Godinho,T.(2020).Testing the Weak Form of Efficient Market Hypothesis : Empirical Evidence from Equity Markets.10.11648/j.ijafrm.20200501.14
Dickey,D.,&Fuller,W.(1981).Likelihoodratiostatisticsforautoregressivetimeserieswithaunitroot. Econometrica,49(4),1057–1072.doi:10.2307/1912517
Ferreira,P.,Dionísio,A.,Guedes,E.F.,&Zebende,G.F.(2018).Aslidingwindowsapproachtoanalysethe evolutionofbanksharesintheEuropeanUnion.Physica A,490,1355–1367.doi:10.1016/j.physa.2017.08.095
Gujarati,D.N.(2004).Basic Econometrics.doi:10.1126/science.1186874
Gunay,S.(2020).ANewFormofFinancialContagion:COVID-19andStockMarketResponses.SSRN
Electronic Journal.10.2139/ssrn.3584243
He,Q.,Liu,J.,Wang,S.,&Yu,J.(2020).TheimpactofCOVID-19onstockmarkets.Economic and Political Studies,8(3),275–288.Advanceonlinepublication.doi:10.1080/20954816.2020.1757570
Jarque,C.M.,&Bera,A.K.(1980).Efficienttestsfornormality,homoscedasticityandserialindependenceof regressionresiduals.Economics Letters,6(3),255–259.doi:10.1016/0165-1765(80)90024-5
Kantelhardt,J.W.,Koscielny-Bunde,E.,Rego,H.H.,Havlin,S.,&Bunde,A.(2001).Detectinglongrangecorrelationswithdetrendedfluctuationanalysis.Physica A,295(3–4),441–454.doi:10.1016/S03784371(01)00144-3
Levin,A.,Lin,C.F.,&Chu,C.S.J.(2002).Unitroottestsinpaneldata:Asymptoticandfinite-sampleproperties. Journal of Econometrics,108(1),1–24.Advanceonlinepublication.doi:10.1016/S0304-4076(01)00098-7 Liu,H.,Manzoor,A.,Wang,C.,Zhang,L.,&Manzoor,Z.(2020).TheCOVID-19outbreakandaffected countriesstockmarketsresponse.International Journal of Environmental Research and Public Health,17(8), 2800.Advanceonlinepublication.doi:10.3390/ijerph17082800PMID:32325710
Okorie,D.I.,&Lin,B.(2020).StockmarketsandtheCOVID-19fractalcontagioneffects.Finance Research Letters,101640.Advanceonlinepublication.doi:10.1016/j.frl.2020.101640PMID:32837366
Peng,C.K.,Buldyrev,S.V.,Havlin,S.,Simons,M.,Stanley,H.E.,&Goldberger,A.L.(1994).Mosaic organizationofDNAnucleotides.Physical Review. E,49(2),1685–1689.doi:10.1103/PhysRevE.49.1685 PMID:9961383
Pernagallo,G.,&Torrisi,B.(2019).AnempiricalanalysisonthedegreeofGaussianityandlongmemoryof financialreturnsinemergingeconomies.Physica A,527,121296.Advanceonlinepublication.doi:10.1016/j.
physa.2019.121296 Perron,P.,&Phillips,P.C.B.(1988).TestingforaUnitRootinaTimeSeriesRegression.Biometrika,2(75), 335–346.doi:10.1080/07350015.1992.10509923
Rehman,S.,Chhapra,I.U.,Kashif,M.,&Rehan,R.(2018).Are Stock Prices a Random Walk? An Empirical Evidence of Asian Stock Markets.ETIKONOMI.doi:10.15408/etk.v17i2.7102
RuizEstrada,M.A.,Park,D.,Koutronas,E.,Khan,A.,&Tahir,M.(2020).TheImpactofInfectiousand ContagiousDiseasesandItsImpactontheEconomicPerformance:TheCaseofWuhan,China.SSRNElectronic
Journal.10.2139/ssrn.3527330
Sansa,N.A.(2020).TheImpactoftheCOVID-19ontheFinancialMarkets:EvidencefromChinaandUSA. SSRNElectronic Journal.10.2139/ssrn.3567901
Yan,B.,Logan,S.,Tu,A.,&Zhang,T.(2020).AnalysisoftheEffectofCOVID-19ontheStockMarketand PotentialInvestingStrategies.SSRNElectronic Journal.
Zeren,F.,&Hizarci,A.(2020).The impact of COVID-19 coronavirus on stock markets: Evidence from selected countries.MuhasebeveFinansİncelemeleriDergisi.,doi:10.32951/mufider.706159
Zhang,D.,Hu,M.,&Ji,Q.(2020).FinancialmarketsundertheglobalpandemicofCOVID-19.Finance Research Letters,36,101528.Advanceonlinepublication.doi:10.1016/j.frl.2020.101528PMID:32837360
Rui Manuel Teixeira Santos Dias holds a Ph.D. in Finance from the University of Évora - Institute for Advanced Studies and Research. He is an Adjunct Professor at the Polytechnic Institute of Setúbal, School of Business Administration and Researcher at the University of Évora (CEFAGE).
João Pereira holds a Ph. D. in Management with a specialization in Marketing from the Universidade Aberta and is a visiting professor in his area of specialization at the Higher Institute of Accounting and Administration of the Lisbon Polytechnic Institute, and at the Universidade Aberta, Portugal.
View publication stats
Do'stlaringiz bilan baham: |