An eulerian-eulerian approach for oil&gas separator design conference Paper



Download 0,89 Mb.
Pdf ko'rish
bet7/12
Sana05.06.2022
Hajmi0,89 Mb.
#639210
1   2   3   4   5   6   7   8   9   ...   12
Bog'liq
An Eulerian-Eulerian Approach for OilGas Separator Design-OMC-2017-670

NUMERICAL MODEL 
The discretization procedure of mass and momentum equation is done using the finite volume 
method in a collocated variable arrangement. Alongside the standard issues in the numerical solution 
of flow equations, the presence of multiple, fully coupled number of phases with arbitrary density 
difference determines three additional challenges: phase-fraction boundness, implicit pressure-
velocity coupling and elimination algorithm for drag term contributions. 
Phase-fraction boundness 
In order to ensure the phase-fraction boundness, the continuity equation is discretized and solved in 
in the form [5]: 

𝜕⌊𝛼
𝑘

𝜕𝑡
⌋ + ⌊∇ ⋅ (𝜙⌊𝛼
𝑘

𝑓
)⌋ + ⌊∇ ⋅ (⌊𝛼
𝑘

𝑓
∑ 𝛼
𝑗
𝜙
𝑟,𝑘𝑗
3
𝑘=1,𝑘≠𝑗
)⌋ = 0
 
Since the volumetric mixture flux 
𝜙
satisfied the continuity of the mixture velocity 
𝒗
̅
, the second term 
is bounded in [0;1]. Problems for the boundness of the variables arise from the third term. The 
bounding of the solution is achieved by using the relative face flux
𝜙
𝑟,𝑘𝑗
to interpolate 
𝛼
𝑘
to the face 
while 
– 𝜙
𝑟,𝑘𝑗
is used to interpolate 
𝛼
𝑗
to the face. The discretization is performed using bounded 
scheme and the solution is achieved in the domain [
𝜀; 1 − 𝜀]
(with 
𝜀 ≪ 1
) for the three-phases. 
Finally, each phase fraction is normalized to ensure that the overall continuity is always guaranteed. 
 



Implicit pressure-velocity coupling 
The numerical discretization of the Navier-Stokes equations in pressure-based solvers requires an 
additional equation to handle the coupling between pressure and velocity in the momentum equation. 
In the present work the derivation of the pressure equation follows the approach used in OpenFOAM 
to relate pressure and velocity in a collocated variable arrangement. This choice requires the use of 
the Rhie-Chow interpolation in order to avoid pressure oscillations and check-board pattern. Starting 
from the incompressibility constrain 
∇ ⋅ 𝒗
̅ = 0
and the semi-discretized form of the momentum 
equation for each phase, the pressure equation for a multiphase incompressible system is: 
∇ ⋅ {[∑ 𝛼
𝑘,𝑓
(
𝛼
𝑘
𝑨
𝒌
)
𝑓
3
𝑘=1
] ∇𝑝
𝑟𝑔ℎ
} = ∇ ⋅ [∑ 𝛼
𝑘,𝑓
(
𝑯
𝒌
𝑨
𝒌
)
𝑓
3
𝑘=1
]

𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 𝑓𝑙𝑢𝑥𝑒𝑠
−∇ ⋅ {∑ (
𝛼
𝑘,𝑓
𝑨
𝒌
)
𝑓
3
𝑘=1
[𝒈 ⋅ 𝒉∇𝜌 − 𝛼
𝑘
|𝒈|(𝜌
𝑘
− 𝜌)]
𝑓
}

𝐺𝑟𝑎𝑣𝑖𝑡𝑦−𝑏𝑜𝑢𝑦𝑎𝑛𝑐𝑦 𝑓𝑙𝑢𝑥𝑒𝑠
The term 
𝑨
𝒌
and

𝑯
𝒌
represent the diagonal part and off-diagonal part of the linear system system 


associated to the generic k-phase velocity, respectively. It is worth noticing that the drag terms are 
absent in the pressure equation since their overall contribution is zero (in absence of capillary and 
surface tension contribution). This allows to reconstruct firstly the pressure field and then the slip 
fluxes and slip velocities, two quantities that enter in the elimination algorithm used to treat the non-
linear drag terms. 

Download 0,89 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   ...   12




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish