Amaliy matematika va informatika” yo’nalishi 18. 07-guruh talabasi Normatov Omadbek Rahmonjon o’g’lining


-§. Aniq integralning geometrik ma`nosi



Download 0,51 Mb.
bet3/7
Sana29.04.2022
Hajmi0,51 Mb.
#592225
1   2   3   4   5   6   7
Bog'liq
INTEGRALLARNI TAQRIBIY HISOBLASH

1.2-§. Aniq integralning geometrik ma`nosi


Bunday formulalarni keltirib chiqarish uchun aniq integralning geometrik ma`nosini bilmoqlik lozim. Agar [a; b] kesmada bo`lsa, u xolda ning qiymati son jixatidan y = f(x) funksiyani grafigi hamda x=a, x=b, to`g’ri chiziqlar bilan chegaralangan shakl (figura) ning yuziga teng (11-rasm). Agar [a;b] kesmada f(x)<0 bo`lsa, integralning qiymati yuqorida keltirilgan shaklning teskari ishora bilan olingan yuziga teng (12-racm).

Shunday qilib aniq integralni hisoblash deganda biror shaklning yuzini hisoblash
tushuniladi. Quyida aniq integralni hisoblash uchun ba`zi taqribiy formulalar bilan tanishib chiqamiz.

1.3-§. To`g’ri turtburchaklar va trapetsiyalar formulasi


Faraz qilaylik, bizdan aniq integralning taqribiy qiymatini topish talab etilsin nuqtalar yordamida [a; b] kesmani p ta teng bo’lakchalarga
bo`lamiz. Har bir bo’lakchaning uzunligi . Bo’linish nuqtalari esa:

Bu nuqtalarni tugun nuqtalar deb ataymiz. f(x) funksiyaning tugun nuqtalaridagi qiymatlari bo`lsin. Bular larga teng bo`ladi. Egri chiziqli trapetsiyaning yuzini topish uchun [a,b] kesmani bo`lish natijasida hosil bo`lgan barcha turtburchaklarning yuzini hisoblab, ularni jamlash kerak bo`ladi. Albatta bu yuzachalarni hisoblashlarda ma`lum darajada xatoliklarga yo`l qo`yiladi (shtrixlangan yuzachalar). Bularni va 5.1-da aytilgan aniq integralning geometrik ma`nosini hisobga olsak, quyidagini yozishimiz mumkin bo`ladi:

Bu yyerda to`g’ri turtburchak yuzini hisoblashda uning chap tomon ordinatasi olindi.
Agar o’ng tomon ordinatami olsak ham shunday formulaga ega bo`lamiz:

(5.2) va (5.3) larni moe ravishda chap va ung formulalar deyiladi. Agar 13- rasmga e`tibor bersak, (5.2) formula bilan integralning qiymati hisoblanganda integralning taqribiy qiymati aniq qiymatidan ma`lum darajada kamrok chikadi, (5.3) yordamida hisoblanganda esa taqribiy qiymat aniq qiymatdan ma`lum darajada kattarok chikadi. Ya`ni (5.2) va (5.3) formulalar yordamida aniq integralning taqribiy qiymati hisoblanganda bu formulalardan biri integralning aniq qiymatini kami bilan ifodalasa, ikkinchisi esa ko`pi bilan ifodalaydi. 13- rasmdan kurinadiki, (5.2) va (5.3) formulalarni qo`llaganda yo`l qo`yiladigan xatolikni kamaytirish uchun bulinish nuqtalarini iloji boricha ko`prok olish, ya`ni qadam h ni tobora kichraytirish lozim bo`ladi. Albatta, h ni kichraytirish hisoblash jarayonining keskin usishiga olib keladi. Bu narsadan xavotirga tushmasligimiz kerak, chunki butun hisoblash jarayoni EHM ga yuklanadi.

Download 0,51 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish