. . . , - 3 m+1, -2m+1, -m+1, 1, m+1, 2m+1, 3m+1,...; {mq+1}=C1
. . . , - 3 m+2, -2m+2, -m+2, 2, m+2, 2m+2, 3m+2,...; {mq+2}=C2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . , -2 m - 1, - m -1, -1, m-1, 2m-1, 3 m-1, 4 m-1,...; {mq+m-1}=Cm-
Shunday qilib , Z= C0 C1 C2 ... . Cm-1 .
Сi ning har bir elementiga shu sinfning chegirmasi deyiladi.(1) dagi ekviva- lentlik sinflar to'plami {Ca , Cb , Cc , ... } ga faktor-to'plam deyiladi va А/R ko'rinishda belgilanadi. Demak, A/R ={Ca , Cb , Cc , ... }.
Yuqorida keltirilgan misolimizda faktor-to'plam Z={C0 , C1 ,C2 , ..., Cm-1} bo'lib o'nga m moduli bo'yicha chegirmalar sinflari to'plami deyiladi.
Agar m moduli bo'yicha chegirmalar sinflarining har biridan birtadan
chegirma olib sistema tuzsak hosil bo'lgan sistemaga m moduli bo'yicha chegirmalarning to'la sistemasi deyiladi. Masalan, {0,1 , 2 , . . . , m-1}.
Agarda m moduli bo'yicha chegirmalarning to'la sistemasidan m bilan o'zaro tublarini olib sistema tuzsak hosil bo'lgan sistemaga m moduli bo'yicha chegirmalarning keltirilgan sistemasi deyiladi. Masalan: m=6 bo'lsa, {1, 5}.
2). N- natural sonlar to'plamini qaralayetgan sonning tub yoki (murakkab) tub emasligi bo'yicha faktorizasiyalash mumkin.
3). Barcha ko'pburchaklar to'plami М ni ko'pburchak tomonlari soni bo'yicha ekvivalent sinflarga ajratish mumkin.
4). Turtburchaklar to'plamida ekvivalentlik munosabatini tomonlarning parallellik tushunchasi sifatida kiritsak, uchta sinf: paralellogrammlar, trapesiyalar va hech qanday ikki tomoni parallel bo'lmagan turtburchaklarga ega bo'lamiz.
Matematika va uning tadbiklarida tartib munosabati deb ataluvchi munosabat muhim ahamiyatga ega. Ikki sonni Miqdori bo'yicha, odamlarning yoshlari bo'yicha, kitoblarni javonda terilishi bo'yicha taqqoslaganda biz tartib munosabatga duch kelamiz.
2-tarif. A to'plamdagi antisimmetrik va tranzitiv munosabat shu tuplamdagi tartib deyiladi.
Tartib munosabati kiritilgan to'plamlarga tartiblangan To'plamlar deyiladi.
Agar А to'plamda aniqlangan tartib munosabati refleksiv bo'lsa, o'nga qatiy emas tartib munosabati, agar antirefleksiv bo'lsa esa qatiy tartib munosabati deyiladi.
3-ta'rif. А to'plamda aniqlangan tartib munosabati bog'langan bo'lsa, ya'ni А ning ixtiyoriy x, y elementlari uchun xy yoki x=y yoki yx munosabatlardan biri, faqat biri bajarilsa, ga chiziqli tartib munosabati deyiladi.
Chiziqli bo'lmagan tartib munosabati odatda qisman tartiblanganlik
munosabati deb yuritiladi.
Misollar.1).Sonlar To'plamida aniqlangan kichik emaslik ()munosabati qisman tartib munosabati bo'ladi.
2). Natural sonlar to'plamida aniqlangan qoldiqsiz bo'lish munosabati ham qisman tartib munosabati bo'ladi.
3). Butun sonlar to'plamida aniqlangan qoldiqsiz bo'linish munosabati esa tartib munosabati emas, chunki a/b va b/a dan a=b kelib chikmaydi.
4-ta'rif. Qisman tartiblangan А to'plamning а elementi uchun ах (х а) munosabat А to'plamdagi barcha х lar uchun bajarilsa, а ga А to'plamning eng kichik elementi (eng katta) deyiladi.
Qisman tartiblangan to'plamlar umuman olganda eng kichik yoki eng katta elementga ega bo'lmasligi mumkin. Tartib munosabati odatda orqali belgilanadi.
Misollar.
1). Miqdorlari bo'yicha tartiblangan haqiqiy sonlar to'plami eng katta va eng kichik elementlarga ega emas.
2). Manfiymas haqiqiy sonlar to'plami eng kichik element 0 ga ega, lekin eng katta elementga ega emas.
3). Natural sonlar to'plami bo'linish munosabati bo'yicha eng kichik element 1 ga ega, lekin eng katta element mavjud emas.
5-ta'rif. Agar qisman tartiblangan А to'plamning а elementidan qat'iy katta (qat'iy kichik) bo'lgan elementlari bo'lmasa, а ga А to'plamning maksimal (minimal) elementi deyiladi.
Qisman tartiblangan to'plam bir qancha maksimal yoki minimal elementlarga ega bo'lishi mumkin. b
Misollar. f
1). Ushbu grafiklarda strelka uchidagi
element “strelka” boshlanishidagi element-
dan “katta” deb olaylik. b,f lar maksimal c e
elementlar a,c,d lar esa minimal element- a
lardir. d
2). A=N\{1} to'plamdagi ixtiyoriy a va b lar uchun b\ a (b element a ning bo'luvchisi) b a kabi yoziladi. Bunday holda barcha tub sonlar minimal elementlarni tashkil qilgan holda eng kichik element esa mavjud emas.
6-ta'rif. Agar chiziqli tartiblangan А to'plamning ixtiyoriy В-qism to'plami doimo eng kichik elementga ega bo'lsa, bunday to'plamga to'la tartib-langan to'plam deyiladi.
Masalan. Natural sonlar to'plami to'la tartiblangan to'plamga misol buladi. Shuni ham ta'kidlash kerakki, umuman olganda berilgan to'plamda tartib tushunchasini bir necha usullar bilan kiritish mumkin.
Masalan, natural sonlar to'plamida1) {1,2,...,n,...} -tabiiy tartib;
2) {...,n,...,2,1} -teskari tartib.
N Q - rasional sonlar to'plamida ham tartib munosabatini turlicha aniqlash mumkin.
ADABIYOTLAR
1. R.N.Nazarov, B.T.Toshpulatov, A.D.Dusumbetov. Algebra va sonlar nazariyasi. 1-qism, Toshkent, «O'qituvchi»,1993
2. Kulikov D. A. Algebra i teoriya chisel.M. “Vishaya shqola”, 1979
Do'stlaringiz bilan baham: |