1. Sharning katta doirasi yuzi 18 ga teng. Shar sirtining yuzini toping.
2. Sharga tashqi chizilgan kubning hajmi 6 ga teng. Sharning radiusini toping.
3. O‘q kesimi kvadratdan iborat silindrga ichki chizilgan sharning hajmi 9π/8 ga teng. Silindrning yon sirtini toping.
4. Sharga ichki chizilgan konusning asosi sharning katta doirasiga teng. Konus o‘q kesimining yuzi 12 ga teng. Sharning hajmini toping.
5. Sharga ichki chizilgan konusning o‘q kesimi teng yonli to‘g‘ri burchakli uchburchakdan iborat. Konus hajmi shar hajmining qanday qismini tashkil etadi?
Yakuniy nazorat test.
1-variant
1. Uchta nuqta berilgan: A (1; 1; 1), B (–1; 0; 1), C (0; 1; 1). Shunday D (x; y; z) nuqtani topingki, AB va CD vektorlar teng bo‘lsin.
A) D (2; 0; 1); B) D (–2; 0; 1); C) D (–2; 1; 1); D) D (2; 0; 0).
2. Skalar ko‘paytmasi 0,5 ga teng bo‘lgan birlik vektorlar orasidagi burchakni toping.
A) 60°; B) 30°; C) 120°; D) 45°.
3. Kubning ikkita qarama-qarshi yoqlarining diagonallari orqali o‘tkazilgan kesimning yuzi 16 2 ga teng. Kubning qirrasini toping.
A) 4; B) 2 2 ; C) 4 2 ; D) 8.
4. Muntazam uchburchakli prizmaning hajmi 27 3 ga, asosiga tashqi chizilgan aylananing radiusi esa 2 ga teng. Prizmaning balandligini toping.
A) 12; B) 8; C) 6; D) 9.
5. Oktaedrning qirrasi a ga teng. Uning to‘la sirtini hisoblang.
A) 2a2 3 ; B) a2 3 ; C) 2 3a2 / 3; D) 4a2 3 .
6. To‘rtburchakli muntazam kesik piramidaning balandligi 16 ga, asoslarining tomonlari 24 va 40 ga teng. Kesik piramidaning diagonalini toping.
A) 48; B) 24; C) 36; D) 40.
7. Konusning balandligi 10 ga, o‘q kesimi uchidagi burchagi 120° ga teng. Konus hajmini toping.
A) 1000p; B) 1200p; C) 900p; D) 600p.
8. Shar katta doirasining yuzi 25π ga teng. Sharning markazidan qanday masofada o‘tkazilgan tekislik shardan doirasining yuzi 9π ga teng bo‘lgan kesim ajratadi?
A) 3,8; B) 3,6; C) 3,5; D) 4.
9. Piramidaning hajmi 25 ga, unga ichki chizilgan sharning radiusi 1,5 ga teng. Piramidaning to‘la sirtini toping.
A) 20; B) 15; C) 25; D)50.
10. Balandligi 3 ga, yasovchisi 6 ga teng bo‘lgan konusga tashqi chizilgan sharning radiusini toping.
A) 3 3 ; B) 5; C) 6; D) 4 2 .
2-variant
1. Uchta nuqta berilgan: A (2 1; –1), B (–3; 1; 1), C (2; 0; 1). ShundayD(x; y; z) nuqtani topingki, AB va CD vektorlar teng bo‘lsin.
A) D (3; 0; 1); B) D (–3; 0; 1); C) D (–3; 0; 3); D) D (–3; 0; 0).
2. Skalar ko‘paytmasi 22ga teng bo‘lgan birlik vektorlar orasidagi burchakni toping.
A) 60°; B) 30°; C) 120°; D) 45°.
3. To‘rtburchakli muntazam prizma asosining tomoni 2 ga, diagonali bilan yon yog‘i orasidagi burchak esa 30° ga teng. Prizmaning hajmini toping.
A) 8 2 ; B) 4; C) 16; D) 4 2 .
4. Silindrning balandligi 5 ga, uning asosiga ichki chizilgan muntazam uchburchakning tomoni 3 3 ga teng. Silindrning hajmini toping.
A) 25π; B) 35π; C) 45π; D) 40π.
5. To‘rtburchakli muntazam piramidaning yon qirrasi 3 2 ga, yon qirra va asos tekisligi orasidagi burchak 45° ga teng. Piramidaning hajmini toping.
A) 12 2 ; B) 18; C) 9 2 ; D) 24.
6. Konusning yasovchisi 15 ga, yon sirti yoyilmasining uchidagi burchagi 120° ga teng. Konus asosining diametrini toping.
A) 10; B) 15; C) 20; D) 25.
7. Asoslarning radiuslari 2 va 7 ga, o‘q kesimining diagonali 15 ga teng bo‘lgan kesik konus yon sirtining yuzini toping.
A) 112π; B) 115π; C) 117π; D) 120π.
8. Kubga tashqi chizilgan sharning hajmi unga ichki chizilgan sharning hajmidan necha marta katta?
A) 8; B) 4; C) 4 2 ; D) 3 3 .
9. Silindrga shar ichki chizilgan. Silindrning hajmi 16π ga teng bo‘lsa, sharning hajmini toping.
A) 32π/3; B) 16π/3; C) 64π/3; D) π.
10. Qirrasi 12 ga teng bo‘lgan kubga konus ichki chizilgan. Konusning asosi
kubning quyi asosiga ichki chizilgan, uchi esa kubning yuqoridagi asosining
markazida. Konusning hajmini toping.
A) 120π; B) 132π; C) 126π; D) 144π.
1. A(x1; y1; z1) va B(x2; y2; z2) nuqtalar berilgan. z2– z1 nimani anglatadi?
A) AB kesma o‘rtasining koordinatasini; B) AB kesma uzunligini;
C) AB vektor uzunligini; D) AB vektor koordinatalaridan birini.
2. 64- rasmda AB⊥α, a⊂a, AO=OB bo‘lsa,
A) A va B nuqtalar O nuqtaga nisbatan simmetrik bo‘ladi;
B) A va B nuqtalar a to‘g‘ri chiziqqa nisbatan simmetrik bo‘ladi;
C) A va B nuqtalar a tekislikka nisbatan simmetrik bo‘ladi;
D) AB kesma a to‘g‘ri chiziqqa nisbatan simmetrik bo‘ladi.
64 65 66
3. 65- rasmda B nuqta AOC tekislikda yotmaydi. Unda OA, OB va OC
vektorlar …
A) kollinear; B) komplanar;
C) bir xil yo‘nalishli; D) komplanar emas.
4. M(–7; 1; 4) va N(–1; –3; 0) nuqtalar berilgan. MN kesma o‘rtasining
koordinatalarini toping.
A) (–4; –1; 4); B) (–4; –1;2); C) (–4; –2; 2); D) (–3; 2; 2).
5. A(0; –3; 2) va B(4; 0; –2) nuqtalar berilgan. AB kesma o‘rtasi nimaga
tegishli?
A) Ox o‘qiga; B) Oy o‘qiga; C) Oz o‘qiga; D) Oxy tekisligiga.
Do'stlaringiz bilan baham: |