Abdishukurov shaxzod



Download 273,27 Kb.
Sana29.01.2022
Hajmi273,27 Kb.
#417010
Bog'liq
Abdishukurov Shaxzod matematika


TOSHKENT DAVLAT IQTISODIYOT UNIVERSITETI SAMARQAND FILIALI ST-121 GURUH TALABASI ABDISHUKUROV SHAXZODNING AMALIY MATEMATIKA FANIDAN MUSTAQIL TA`LIM PREZENTATSIYASI
Bajardi: Abdishukurov Shoxzod
Tekshirdi: Ismoilov G`olib
MAVZU: MATRITSANING XOSSALARI
REJA:

Matritsalar va ular ustida amallar


๐‘šx ๐‘› dona ๐‘Ž๐‘– ๐‘— (๐‘– = 1, ๐‘š, ๐‘— = 1, ๐‘› ) elementlardan tuzilgan toโ€™gโ€™ri burchakli jadval matritsa deyiladi va

๐‘Ž11

๐‘Ž12

๐‘Ž13

. . .

๐‘Ž1๐‘›

๐‘Ž11

๐‘Ž12

๐‘Ž13

. . .

๐‘Ž1๐‘›

๐ด =

๐‘Ž21
. . .

๐‘Ž22
. . .

๐‘Ž23
. . .

. . .
. . .

๐‘Ž2๐‘›
. . .

yoki ๐ด =

๐‘Ž21
. . .

๐‘Ž22
. . .

๐‘Ž23
. . .

. . .
. . .

๐‘Ž2๐‘›
. . .

๐‘Ž๐‘›1

๐‘Ž๐‘›2

๐‘Ž๐‘›3

. . .

๐‘Ž๐‘›๐‘›

๐‘Ž๐‘›1

๐‘Ž๐‘›2

๐‘Ž๐‘›3

. . .

๐‘Ž๐‘›๐‘›

koโ€™rinishda yoziladi. Matritsaning elementlari ikkita indesklar bilan belgilanadi. Elementning birinchi ๐‘– indeksi satr nomini, ikkinchi ๐‘— indeks esa ustunning nomerini bildiradi. Matritsaning ๐‘Ž๐‘– ๐‘— elementi ๐‘– โˆ’ satr va ๐‘— โˆ’ ustun kesishgan joyda joylashgan.
Matritsalar odatda katta lotin harflari bilan belgilanadi:
๐ด, ๐ต, ๐ถ, . . .

Matritsalar va ular ustida amallar


Agar matritsa ๐‘š ta satr va ๐‘› ta ustunga ega boโ€™lsa, u holda taโ€™rifga binoan, bu matritsa
๐‘šร— ๐‘› oโ€™lchovga ega boโ€™ladi. Zaruriyat boโ€™lganida matritsani ๐ด๐‘šร—๐‘› koโ€™rinishda ham belgilaymiz. Agar matritsaning ๐‘Ž๐‘– ๐‘— elementlari sonlar boโ€™lsa, bunday matritsa sonli
matritsa deyiladi; agar matritsaning ๐‘Ž๐‘– ๐‘— elementlari funksiyalar boโ€™lsa, bunday matritsa
funksional matritsa deyiladi; ๐‘Ž๐‘– ๐‘— elementlar vektorlar boโ€™lganda esa, vektor matritsa deyiladi va hokazo.

Matritsalar va ular ustida amallar


Agar ๐ด va ๐ต matritsalarning mos ๐‘Ž๐‘– ๐‘— va ๐‘๐‘– ๐‘— elementlari bir-biriga teng, ya`ni
๐‘Ž๐‘– ๐‘— = ๐‘๐‘– ๐‘— boโ€™lsa, bunday ๐ด va ๐ต matritsalar teng matritsalar deyiladi. Faqat bir xil oโ€™lchovli matritsalargina bir-biriga teng boโ€™lishi mumkin. Har xil oโ€™lchovli matritsalarning bir-biriga teng boโ€™lishi yoki teng emasligi tushunchalari kiritilmagan. Satrlarining soni ustunlarining soniga teng boโ€™lgan (๐‘š= ๐‘›) matritsalar kvadrat matritsalar deyiladi. Agar ๐‘– = 1 boโ€™lsa, u holda satr-matritsaga ega boโ€™lamiz; agar
๐‘— = 1 boโ€™lsa, biz ustun-matritsaga ega boโ€™lamiz. Ular mos ravishda satr-vektor va
ustun-vektor ham deb ataladi.

Matritsalar va ular ustida amallar


Matritsalar ustidagi asosiy amallarni oโ€™rganamiz.
Matritsalarni qoโ€™shish va ayirish.
Bu amallarni faqat bir xil oโ€™lchovli matritsalar ustida bajarish mumkin. ๐ด va ๐ต matritsalarning yigโ€™indisi (ayirmasi) ๐ด + ๐ต (๐ด โˆ’ ๐ต) bilan belgilanadi. ๐ด va ๐ต matritsalarning ๐ด + ๐ต (๐ด โˆ’ ๐ต) yigโ€™indisi (ayirmasi) deb shunday ๐ถ matritsaga
aytiladiki, ๐ถ matritsaning elementlari ๐‘๐‘– ๐‘— = ๐‘Ž๐‘– ๐‘— ยฑ ๐‘๐‘– ๐‘— dan iboratdir,
bu yerda ๐‘Ž๐‘– ๐‘— va ๐‘๐‘– ๐‘— - mos ravishda ๐ด va ๐ต matritsalarning elementlari.

Matritsalar va ular ustida amallar


Masalan, ikkita

1

6

โˆ’2

4

๐ด =

2

โˆ’4

,

๐ต =

3

7

.

โˆ’3

9

8

โˆ’11

matritsalar berilgan boโ€™lsin. U holda
๐ด + ๐ต =
1 + (โˆ’2)
2 + 3
โˆ’3 + 8
6 + 4
โˆ’4 + 7 =
9 + (โˆ’11)
โˆ’1 10
5 3
5 โˆ’2
,
๐ด โˆ’ ๐ต =
1 โˆ’ (โˆ’2)
2 โˆ’ 3
โˆ’3 โˆ’ 8
6 โˆ’ 4
โˆ’4 โˆ’ 7
9 โˆ’ (โˆ’11)
=
3 2
โˆ’1 โˆ’11
โˆ’11 20
.

Matritsalar va ular ustida amallar


Matritsani songa koโ€™paytirish.
๐ด matritsani ๐œ† songa koโ€™paytmasi ๐œ†๐ด bilan belgilanadi.
๐ด matritsaning ๐œ† songa ๐œ†๐ด koโ€™paytmasi deb shunday ๐ต matritsaga aytiladiki, ๐ต
matritsaning elementlari ๐‘๐‘– ๐‘— = ๐œ† ๐‘Ž๐‘– ๐‘— dan iboratdir, bu yerda ๐‘Ž๐‘– ๐‘— โ€“ ๐ด matritsaning elementlari. ๐ด matritsani ๐œ† songa koโ€™paytirganda hosil boโ€™ladigan ๐ต matritsa ๐ด matritsa bilan bir xil oโ€™lchovli boโ€™ladi. Hullas, matritsani biror songa koโ€™paytirish uchun bu matritsaning har bir elementini shu songa koโ€™paytirib chiqish kerak.

Matritsalar va ular ustida amallar


Masalan,
๐œ† = โˆ’2,
๐ด =
3 0
7 โˆ’1
boโ€™lsin. U holda
๐œ†๐ด = โˆ’2 โ‹…
3 0
7 โˆ’1
=
โˆ’6 0
โˆ’14 2
.

Matritsalar va ular ustida amallar


Matritsalarni koโ€™paytirish.
matritsalarning koโ€™paytmasi deb shunday ๐ถ๐‘šร—๐‘ = ๐ด โ‹… ๐ต (sodda qilib,
๐ด๐‘šร—๐‘› va ๐ต๐‘›ร—๐‘
๐ด๐ต) matritsaga aytiladiki, bu ๐ถ matritsaning elementlari
๐‘ ๐‘– ๐‘— = ๐‘Ž๐‘–1๐‘1๐‘— + ๐‘Ž๐‘– 2๐‘2๐‘— + ๐‘Ž๐‘– 3๐‘3๐‘— +. . . +๐‘Ž๐‘– ๐‘›๐‘๐‘›๐‘—
koโ€™rinishda boโ€™ladi, bu yerda ๐‘Ž๐‘– ๐‘— va ๐‘๐‘– ๐‘— - mos ravishda ๐ด va ๐ต matritsalarning
elementlari. Bundan koโ€™rinadiki, ๐ด va ๐ต matritsalarning koโ€™paytmasi maโ€™noga ega boโ€™lishi uchun ๐ด matritsaning ustunlari soni ๐ต matritsaning satrlari soniga teng
boโ€™lishi zarur. Hosil boโ€™lgan ๐ด๐ต koโ€™paytmaning satrlari soni ๐ด matritsaning satrlari soniga, ustunlari soni esa ๐ต matritsaning ustunlari soniga teng.

Matritsalar va ular ustida amallar


๐ด๐ต koโ€™paytmaning mavjudligidan ๐ต๐ด koโ€™paytmaning mavjudligi kelib chiqmaydi. ๐ด๐ต va ๐ต๐ด koโ€™paytmalar mavjud boโ€™lgan taqdirda ham, odatda (koโ€™p hollarda), ๐ด๐ต va ๐ต๐ด koโ€™paytmalar bir-biriga teng boโ€™lmaydi: ๐ด๐ต โ‰  ๐ต๐ด. Agar ๐ด๐ต = ๐ต๐ด boโ€™lsa, u holda ๐ด va ๐ต matritsalar oโ€™zaro oโ€™rin almashinuvchi (kommutativ) matritsalar deyiladi.
Maโ€™lumki, har doim ๐ด๐ต ๐ถ = ๐ด ๐ต๐ถ tenglik oโ€™rinli.

Matritsalar va ular ustida amallar


Misol 1. ๐ด๐ต va ๐ต๐ด koโ€™paytmalarni toping.
๐ด =
4 โˆ’5 8
1 3 โˆ’1
,
๐ต =
โˆ’1 5
โˆ’2 โˆ’3
3 4
.
๐ด๐ต koโ€™paytmani topamiz:
๐ด๐ต =
4 โˆ’5 8
1 3 โˆ’1
โ‹…
โˆ’1 5
โˆ’2 โˆ’3
3 4
=
=
4 โ‹… (โˆ’1) + (โˆ’5) โ‹… (โˆ’2) + 8 โ‹… 3
1 โ‹… (โˆ’1) + 3 โ‹… (โˆ’2) + (โˆ’1) โ‹… 3
4 โ‹… 5 + (โˆ’5) โ‹… (โˆ’3) + 8 โ‹… 4
1 โ‹… 5 + 3 โ‹… (โˆ’3) + (โˆ’1) โ‹… 4
=
30 67
โˆ’10 โˆ’8
.

Matritsalar va ular ustida amallar


๐ต๐ด koโ€™paytmani topamiz:
๐ต๐ด =
โˆ’1 5
โˆ’2 โˆ’3
3 4
โ‹…
4 โˆ’5 8
1 3 โˆ’1
=
(โˆ’1) โ‹… 4 + 5 โ‹… 1
(โˆ’2) โ‹… 4 + (โˆ’3) โ‹… 1
3 โ‹… 4 + 4 โ‹… 1
(โˆ’1) โ‹… (โˆ’5) + 5 โ‹… 3
(โˆ’2) โ‹… (โˆ’5) + (โˆ’3) โ‹… 3
3 โ‹… (โˆ’5) + 4 โ‹… 3
(โˆ’1) โ‹… 8 + 5 โ‹… (โˆ’1)
(โˆ’2) โ‹… 8 + (โˆ’3) โ‹… (โˆ’1)
3 โ‹… 8 + 4 โ‹… (โˆ’1)
=
1 20 โˆ’13
โˆ’11 1 โˆ’13
16 โˆ’3 20
.
Shunday qilib, ๐ด๐ต โ‰  ๐ต๐ด ekan.

Matritsalar va ular ustida amallar


Misol 2. ๐ด๐ต va ๐ต๐ด koโ€™paytmalarni toping.
๐ด =
3 5
1 2
, ๐ต =
1 โˆ’5
โˆ’1 2
.
Hisoblaymiz:
๐ด๐ต =
โ‹…
3 5 1 โˆ’5
1 2 โˆ’1 2
=
3 โ‹… 1 + 5 โ‹… (โˆ’1)
1 โ‹… 1 + 2 โ‹… (โˆ’1)
3 โ‹… (โˆ’5) + 5 โ‹… 2
1 โ‹… (โˆ’5) + 2 โ‹… 2
=
โˆ’2 โˆ’5
โˆ’1 โˆ’1
,
๐ต๐ด =
โ‹…
1 โˆ’5 3 5
โˆ’1 2 1 2
=
1 โ‹… 3 + (โˆ’5) โ‹… 1
(โˆ’1) โ‹… 3 + 2 โ‹… 1
1 โ‹… 5 + (โˆ’5) โ‹… 2
(โˆ’1) โ‹… 5 + 2 โ‹… 2
=
โˆ’2 โˆ’5
โˆ’1 โˆ’1
.
Shunday qilib, ๐ด๐ต = ๐ต๐ด ekan.

Matritsalar va ular ustida amallar


Misol 3. ๐ด๐ต ๐ถ va ๐ด ๐ต๐ถ koโ€™paytmalarni toping.
๐ด =
1 3
โˆ’1 1
2 5
, ๐ต =
2 โˆ’6 1
1 3 โˆ’1
, ๐ถ =
โˆ’1
2
4
.
Koโ€™paytmalarni hisoblaymiz:

5

3

โˆ’2

โˆ’7

๐ด๐ต =

โˆ’1

9

โˆ’2

,

๐ด๐ต ๐ถ =

11

,

9

3

โˆ’3

โˆ’15

๐ต๐ถ =
โˆ’10
1
, ๐ด ๐ต๐ถ =
โˆ’7
11
โˆ’15
,
ya`ni
๐ด๐ต ๐ถ = ๐ด ๐ต๐ถ .
E`TIBORINGIZ UCHUN RAHMAT!
Download 273,27 Kb.

Do'stlaringiz bilan baham:




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
ัŽั€ั‚ะดะฐ ั‚ะฐะฝั‚ะฐะฝะฐ
ะ‘ะพา“ะดะฐ ะฑะธั‚ะณะฐะฝ
ะ‘ัƒะณัƒะฝ ัŽั€ั‚ะดะฐ
ะญัˆะธั‚ะณะฐะฝะปะฐั€ ะถะธะปะผะฐะฝะณะปะฐั€
ะญัˆะธั‚ะผะฐะดะธะผ ะดะตะผะฐะฝะณะปะฐั€
ะฑะธั‚ะณะฐะฝ ะฑะพะดะพะผะปะฐั€
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan boโ€™yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
boโ€™yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish