+36 ko’phadning ildizlarini toping. 2-misol f(x)=2x



Download 2,21 Mb.
Sana29.12.2021
Hajmi2,21 Mb.
#84385
Bog'liq
10 sinf yuqori darajali tenglama variativ


1-misol f(x)=x4-13x2+36 ko’phadning ildizlarini toping.

2-misol. f(x)=2x5+x4-10x3-5x2+8x+4=0 ko’phadning ildizlarini toping.

3-misol. Kasrlarni qisqartiring:

a)  b) 

c)  d) 

4-misol.  ifodani soddalashtiring.

5-misol.  ifodani soddalashtiring.

6-misol . tenglamaning ildizlari ko’paytmasini toping.

7-misol. tenglamani ildizlari yig’indisini toping.

8- misol. x3+2x2-9x-18=0 tenglamani ildizlari yig’indisini toping.

9. Ushbu Ushbu x3-px2-qx+4=0 tenglamaning ildizlaridan biri 1 ga teng.Shu

tenglama barcha koeffitsientlarini yig‘indisini toping.

10. tenglamani yeching
1. Ifodani soddalashtiring.

a) b)

d)

2. Agar bo’lsa x2(4-x) ning qiymatini toping.

3. =0 tenglamaning eng katta yechimini toping.

4. Tenglamalarni yeching.

a) 3x4-48=0 ; b) x6-27=0 ;

c) 12x4-8x=0 ; d)x6-16x2=0 ;

e) x3-64=0 ; f) x2-49=0 ;

g) 2x6-54=0 h) 5x3-6x=0 ;

5-misol. x4 +4x3-10x2-28x-15=0 tenglamani yeching.

6. tenglamaning ildizlaridan biri -2 ga teng . uning ikkinchi ildizini toping.

7. (x2-5)2+x2-5=0 tenglamanig ildizlari ko’paytmasini toping.

8. Qaytma tenglamalarni yeching.

3x4+2x3-4x2+2x+3=0 ;

2x4-4x3+8x2-4x+2=0

21x6+82x5+103x4+164x3+103x2+82x+21=0
1. P(x) ni Q(x) ga bo’lgandagi qoldiqni toping. Bo’lishni burchak usuli yordamida tekshiring.

P(x) = 32х4-64х3 + 8х2 + 36х + 4

Q(x) = 2х-1



P(x) = х4-4х3 + 7х2-12х + 12

Q(x) = х-2



2. P(x)= x + x³ + x9 + x27 + x81 + x243 ko’phadni  Q(x)=  x – 1 ko’phadga bo’lgandagi qoldiqni toping

3. P(x) = (x + 1)6 – x6 – 2x – 1  ko’phad Q(x)= x(x + 1)(2x + 1) ko’phadga bo’linishini ko’rsating.

4. a va b ning qanday qiymatlarida  P(x) = (a + b)x5 + abx² + 1 ko’phad Q(x)= x² – 3x + 2 ko’phdga qoldiqsiz bo’linadi?

5. a ning qanday qiymatlarida  P(x) = xn + axn–2  (n ≥ 2) ko’phad Q(x)= x – 2 ko’phdga qoldiqsiz bo’linadi?

6. a ning qanday qiymatlarida  P(x) = a³x5 + (1 – a)x4 + (1 + a³)x² + (1 – 3a)x – a³  ko’phad Q(x)= x – 1 ko’phdga qoldiqsiz bo’linadi?

7. P(x)=xn + x + 2 ko’phadni Q(x)= x² – 1ko’phadga bo’lgandagi R(x) qoldiqni toping.

8. P(x) = x5 – 17x + 1  ko’phadni Q(x)= на  x + 2 ko’phadga bo’lgandagi R(x) qoldiqni toping.

9. P(x) = x81 + x27 + x9 + x³ + x  ko’phadni quyida berilgan ko’phadlarga bo’lgandagi qoldiqni toping.  a)  x – 1;    b)  x² – 1.

10. a³(b² – c²) + b³(c² – a²) + c³(a² – b²) ko’phadni  (b – c)(c – a)(a – b)ko’phadga bo’linishini isbotlang.
1. P(x) ni Q(x) ga bo’lgandagi qoldiqni toping. Bo’lishni burchak usuli yordamida tekshiring.

P(x) = 32х4-64х3 + 8х2 + 36х + 4

Q(x) = 2х-1



P(x) = х4-4х3 + 7х2-12х + 12

Q(x) = х-2



2. P(x)= x + x³ + x9 + x27 + x81 + x243 ko’phadni  Q(x)=  x – 1 ko’phadga bo’lgandagi qoldiqni toping

3. P(x) = (x + 1)6 – x6 – 2x – 1  ko’phad Q(x)= x(x + 1)(2x + 1) ko’phadga bo’linishini ko’rsating.

4. a va b ning qanday qiymatlarida  P(x) = (a + b)x5 + abx² + 1 ko’phad Q(x)= x² – 3x + 2 ko’phdga qoldiqsiz bo’linadi?

5. a ning qanday qiymatlarida  P(x) = xn + axn–2  (n ≥ 2) ko’phad Q(x)= x – 2 ko’phdga qoldiqsiz bo’linadi?

6. a ning qanday qiymatlarida  P(x) = a³x5 + (1 – a)x4 + (1 + a³)x² + (1 – 3a)x – a³  ko’phad Q(x)= x – 1 ko’phdga qoldiqsiz bo’linadi?

7. P(x)=xn + x + 2 ko’phadni Q(x)= x² – 1ko’phadga bo’lgandagi R(x) qoldiqni toping.

8. P(x) = x5 – 17x + 1  ko’phadni Q(x)= на  x + 2 ko’phadga bo’lgandagi R(x) qoldiqni toping.

9. P(x) = x81 + x27 + x9 + x³ + x  ko’phadni quyida berilgan ko’phadlarga bo’lgandagi qoldiqni toping.  a)  x – 1;    b)  x² – 1.

10. a³(b² – c²) + b³(c² – a²) + c³(a² – b²) ko’phadni  (b – c)(c – a)(a – b)ko’phadga bo’linishini isbotlang.

1. Gorner sxamasi yordamida P(x)=5x4 +5x3 +x2 −11 ko’phadni Q(x)= x−1 ko’phadga bo’ling.

2. Gorner sxamasi yordamida P(x)= x4+3x3+4x2−5x−47 ko’phadni Q(x)= x+3 ko’phadga bo’ling.

3. P(x)= x6+2x5−21x4−20x3+71x2+114x+45 Gorner sxemasi yordamida ko’phadning barcha butun yechimlarini toping

4. P(x)=3x6+9x5−28x4+6x3−30x2−30x+100 ko’phadni 2 va -5 sonlar ildizibo’lishini tekshiring. Berilgan ko’phadni x-2 va x+5 ko’phadlarga bo’ling.

5. 2x3-11x2+12x+9 ko’phadni ikkihadga bo’linishini tekshiring.

6. x3-7x-6=0 tenglama ildizlarini toping va tenglikni chap qismini ko’paytuvchilarga ajrating.

7. Gorner sxamasi yordamida P(x) ni Q(x) ga bo’ling.

P(x) = х3 + 3х2-18х-40 Q(x) = х + 2

P(x) = х4 + 2х3-3х2 + 5х-2 Q(x) = 2х-3

8. Ko’phadni ikkihadga bo’lgandagi qoldiqni toping.

a) 2x3-5x2+3x+7 ni x-2 ga

b) x4+x3+x2-2x+4 ni x+3 ga d) x2+5x-6 ni x-2 ga

9. Berilgan ko’phadni ikkihadga bo’linishini qoldiqsiz bo’linishini ko’rsating.



a) 2x4-3x3-7x2+6x+8 va x-2  b) 2x3-5x2+1 ni x+1/2 ga

10. Gorner sxamasi yordamida P(x) ni Q(x) ga bo’ling.



P(x)=2x4-x3-9x2+13x-5 va Q(x)=x-2 

11. Gorner sxamasi yordamida P(x) ni Q(x) ga bo’lgandagi qoldiqni toping.

P(x)= x6−4x4+x3−2x2+5 Q(x)=x+3 

1. Gorner sxamasi yordamida P(x)=5x4 +5x3 +x2 −11 ko’phadni Q(x)= x−1 ko’phadga bo’ling.

2. Gorner sxamasi yordamida P(x)= x4+3x3+4x2−5x−47 ko’phadni Q(x)= x+3 ko’phadga bo’ling.

3. P(x)= x6+2x5−21x4−20x3+71x2+114x+45 Gorner sxemasi yordamida ko’phadning barcha butun yechimlarini toping

4. P(x)=3x6+9x5−28x4+6x3−30x2−30x+100 ko’phadni 2 va -5 sonlar ildizibo’lishini tekshiring. Berilgan ko’phadni x-2 va x+5 ko’phadlarga bo’ling.

5. 2x3-11x2+12x+9 ko’phadni ikkihadga bo’linishini tekshiring.

6. x3-7x-6=0 tenglama ildizlarini toping va tenglikni chap qismini ko’paytuvchilarga ajrating.

7. Gorner sxamasi yordamida P(x) ni Q(x) ga bo’ling.

P(x) = х3 + 3х2-18х-40 Q(x) = х + 2

P(x) = х4 + 2х3-3х2 + 5х-2 Q(x) = 2х-3

8. Ko’phadni ikkihadga bo’lgandagi qoldiqni toping.

a) 2x3-5x2+3x+7 ni x-2 ga

b) x4+x3+x2-2x+4 ni x+3 ga d) x2+5x-6 ni x-2 ga

9. Berilgan ko’phadni ikkihadga bo’linishini qoldiqsiz bo’linishini ko’rsating.



a) 2x4-3x3-7x2+6x+8 va x-2  b) 2x3-5x2+1 ni x+1/2 ga

10. Gorner sxamasi yordamida P(x) ni Q(x) ga bo’ling.



P(x)=2x4-x3-9x2+13x-5 va Q(x)=x-2 

11. Gorner sxamasi yordamida P(x) ni Q(x) ga bo’lgandagi qoldiqni toping.

P(x)= x6−4x4+x3−2x2+5 Q(x)=x+3 

.

1. Gorner sxemasi yordamida tenglamalarni yeching.



a) x4+7x2-24=0 ; b) x3+4x-80=0 ; d) 7x4-5x3+2x=0 ;

f) 9x4+4x3-13x2=0 ; g) x4-8x2-9=0

h) x4-x3-x2+x-5=0 ; i)x5+x4+3x=0 ; j) 6x2+7x-81=0 ;

k) x4+5x3-7x2-x-5=0 ; l) x3+3x2-4x-6=0 ; ; m) 6x2+5x-90=0 ;

2-misol f(x)=x4-13x2+36 ko’phadning ildizlarini toping.

3-misol. f(x)=2x5+x4-10x3-5x2+8x+4=0 ko’phadning ildizlarini toping.

4-misol. tenglamani yeching.

5-misol. x3+4x2-3x+5 ko’phadni Gorner sxemasidan foydalanib, x-1 ga bo’lishni bajaring.

6-misol. P(x)= x3-3x2+5x+7 ni 2x+1 ga bo’lishdan hosil bo’lgan qoldiqni toping.

7-misol. P4(x) = x4+x3+3x2+2x+2 ko’phadni x-1 ga bo’lishdan hosil bo’lgan qoldiqni toping

8-misol: P5(x)= 2x5 –x4-3x3+x-3 ni x-3 ga bo’lishdan hosil bo’lgan qoldiqni toping.

9-misol. F(x)=2x5+x4-10x3-5x2+8x+4 ko’phadning ildizlarini toping.

10-misol. F(x)=x4-13x2+36 ko’phadning ildizlarini toping.

11-misol. Gorner sxemasidan foydalanib, f(x) ko’phadning x=a nuqtadagi qiymatini toping.

1) f(x)= ; 2) f(x)= ; 3) f(x)=
1. Gorner sxemasi yordamida tenglamalarni yeching.

a) x4+7x2-24=0 ; b) x3+4x-80=0 ; d) 7x4-5x3+2x=0 ;

f) 9x4+4x3-13x2=0 ; g) x4-8x2-9=0

h) x4-x3-x2+x-5=0 ; i)x5+x4+3x=0 ; j) 6x2+7x-81=0 ;

k) x4+5x3-7x2-x-5=0 ; l) x3+3x2-4x-6=0 ; ; m) 6x2+5x-90=0 ;

2-misol f(x)=x4-13x2+36 ko’phadning ildizlarini toping.

3-misol. f(x)=2x5+x4-10x3-5x2+8x+4=0 ko’phadning ildizlarini toping.

4-misol. tenglamani yeching.

5-misol. x3+4x2-3x+5 ko’phadni Gorner sxemasidan foydalanib, x-1 ga bo’lishni bajaring.

6-misol. P(x)= x3-3x2+5x+7 ni 2x+1 ga bo’lishdan hosil bo’lgan qoldiqni toping.

7-misol. P4(x) = x4+x3+3x2+2x+2 ko’phadni x-1 ga bo’lishdan hosil bo’lgan qoldiqni toping

8-misol: P5(x)= 2x5 –x4-3x3+x-3 ni x-3 ga bo’lishdan hosil bo’lgan qoldiqni toping.

9-misol. F(x)=2x5+x4-10x3-5x2+8x+4 ko’phadning ildizlarini toping.

10-misol. F(x)=x4-13x2+36 ko’phadning ildizlarini toping.

11-misol. Gorner sxemasidan foydalanib, f(x) ko’phadning x=a nuqtadagi qiymatini toping.

1) f(x)= ; 2) f(x)= ; 3) f(x)=



x2+y2=(x+y)2-2xy

x3+y3=(x+y)3-3xy(x+y)

x4+y4= 2xy(x2+y2)-(x4+y4)+3(xy)2 и т.д.















Теорема 4. Элемент a поля K является корнем многочлена f(x) ненулевой степени (то есть f(a) = 0) тогда и только тогда, когда f(x) = (x − a) · p(x) для некоторого многочлена p(x)

6-misol. 3x4+3x3+4x2-50=0

7-misol. x4+x3-8x2-2x+8=0 ;


4-misol. tenglamalarni yeching.

a) x4+7x2-24=0 ; b) x3+4x-80=0 ; d) 7x4-5x3+2x=0 ;

e) x2+4x+4=0 ; f) 9x4+4x3-13x2=0 ; g) x4-8x2-9=0

h) x4-x3-x2+x-5=0 ; i)x5+x4+3x=0 ; j) 6x2+7x-81=0 ;

k) x4+5x3-7x2-x-5=0 ; l) x3+3x2-4x-6=0 ; ; m) 6x2+5x-90=0 ;



n) 5x5-4x4+3x3-2x2+x-3=0 ;

Download 2,21 Mb.

Do'stlaringiz bilan baham:




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish