1-misol f(x)=x4-13x2+36 ko’phadning ildizlarini toping.
2-misol. f(x)=2x5+x4-10x3-5x2+8x+4=0 ko’phadning ildizlarini toping.
3-misol. Kasrlarni qisqartiring:
a) b)
c) d)
4-misol. ifodani soddalashtiring.
5-misol. ifodani soddalashtiring.
6-misol . tenglamaning ildizlari ko’paytmasini toping.
7-misol. tenglamani ildizlari yig’indisini toping.
8- misol. x3+2x2-9x-18=0 tenglamani ildizlari yig’indisini toping.
9. Ushbu Ushbu x3-px2-qx+4=0 tenglamaning ildizlaridan biri 1 ga teng.Shu
tenglama barcha koeffitsientlarini yig‘indisini toping.
10. tenglamani yeching
1. Ifodani soddalashtiring.
a) b)
d)
2. Agar bo’lsa x2(4-x) ning qiymatini toping.
3. =0 tenglamaning eng katta yechimini toping.
4. Tenglamalarni yeching.
a) 3x4-48=0 ; b) x6-27=0 ;
c) 12x4-8x=0 ; d)x6-16x2=0 ;
e) x3-64=0 ; f) x2-49=0 ;
g) 2x6-54=0 h) 5x3-6x=0 ;
5-misol. x4 +4x3-10x2-28x-15=0 tenglamani yeching.
6. tenglamaning ildizlaridan biri -2 ga teng . uning ikkinchi ildizini toping.
7. (x2-5)2+x2-5=0 tenglamanig ildizlari ko’paytmasini toping.
8. Qaytma tenglamalarni yeching.
3x4+2x3-4x2+2x+3=0 ;
2x4-4x3+8x2-4x+2=0
21x6+82x5+103x4+164x3+103x2+82x+21=0
1. P(x) ni Q(x) ga bo’lgandagi qoldiqni toping. Bo’lishni burchak usuli yordamida tekshiring.
P(x) = 32х4-64х3 + 8х2 + 36х + 4
Q(x) = 2х-1
|
P(x) = х4-4х3 + 7х2-12х + 12
Q(x) = х-2
|
2. P(x)= x + x³ + x9 + x27 + x81 + x243 ko’phadni Q(x)= x – 1 ko’phadga bo’lgandagi qoldiqni toping
3. P(x) = (x + 1)6 – x6 – 2x – 1 ko’phad Q(x)= x(x + 1)(2x + 1) ko’phadga bo’linishini ko’rsating.
4. a va b ning qanday qiymatlarida P(x) = (a + b)x5 + abx² + 1 ko’phad Q(x)= x² – 3x + 2 ko’phdga qoldiqsiz bo’linadi?
5. a ning qanday qiymatlarida P(x) = xn + axn–2 (n ≥ 2) ko’phad Q(x)= x – 2 ko’phdga qoldiqsiz bo’linadi?
6. a ning qanday qiymatlarida P(x) = a³x5 + (1 – a)x4 + (1 + a³)x² + (1 – 3a)x – a³ ko’phad Q(x)= x – 1 ko’phdga qoldiqsiz bo’linadi?
7. P(x)=xn + x + 2 ko’phadni Q(x)= x² – 1ko’phadga bo’lgandagi R(x) qoldiqni toping.
8. P(x) = x5 – 17x + 1 ko’phadni Q(x)= на x + 2 ko’phadga bo’lgandagi R(x) qoldiqni toping.
9. P(x) = x81 + x27 + x9 + x³ + x ko’phadni quyida berilgan ko’phadlarga bo’lgandagi qoldiqni toping. a) x – 1; b) x² – 1.
10. a³(b² – c²) + b³(c² – a²) + c³(a² – b²) ko’phadni (b – c)(c – a)(a – b)ko’phadga bo’linishini isbotlang.
1. P(x) ni Q(x) ga bo’lgandagi qoldiqni toping. Bo’lishni burchak usuli yordamida tekshiring.
P(x) = 32х4-64х3 + 8х2 + 36х + 4
Q(x) = 2х-1
|
P(x) = х4-4х3 + 7х2-12х + 12
Q(x) = х-2
|
2. P(x)= x + x³ + x9 + x27 + x81 + x243 ko’phadni Q(x)= x – 1 ko’phadga bo’lgandagi qoldiqni toping
3. P(x) = (x + 1)6 – x6 – 2x – 1 ko’phad Q(x)= x(x + 1)(2x + 1) ko’phadga bo’linishini ko’rsating.
4. a va b ning qanday qiymatlarida P(x) = (a + b)x5 + abx² + 1 ko’phad Q(x)= x² – 3x + 2 ko’phdga qoldiqsiz bo’linadi?
5. a ning qanday qiymatlarida P(x) = xn + axn–2 (n ≥ 2) ko’phad Q(x)= x – 2 ko’phdga qoldiqsiz bo’linadi?
6. a ning qanday qiymatlarida P(x) = a³x5 + (1 – a)x4 + (1 + a³)x² + (1 – 3a)x – a³ ko’phad Q(x)= x – 1 ko’phdga qoldiqsiz bo’linadi?
7. P(x)=xn + x + 2 ko’phadni Q(x)= x² – 1ko’phadga bo’lgandagi R(x) qoldiqni toping.
8. P(x) = x5 – 17x + 1 ko’phadni Q(x)= на x + 2 ko’phadga bo’lgandagi R(x) qoldiqni toping.
9. P(x) = x81 + x27 + x9 + x³ + x ko’phadni quyida berilgan ko’phadlarga bo’lgandagi qoldiqni toping. a) x – 1; b) x² – 1.
10. a³(b² – c²) + b³(c² – a²) + c³(a² – b²) ko’phadni (b – c)(c – a)(a – b)ko’phadga bo’linishini isbotlang.
1. Gorner sxamasi yordamida P(x)=5x4 +5x3 +x2 −11 ko’phadni Q(x)= x−1 ko’phadga bo’ling.
2. Gorner sxamasi yordamida P(x)= x4+3x3+4x2−5x−47 ko’phadni Q(x)= x+3 ko’phadga bo’ling.
3. P(x)= x6+2x5−21x4−20x3+71x2+114x+45 Gorner sxemasi yordamida ko’phadning barcha butun yechimlarini toping
4. P(x)=3x6+9x5−28x4+6x3−30x2−30x+100 ko’phadni 2 va -5 sonlar ildizibo’lishini tekshiring. Berilgan ko’phadni x-2 va x+5 ko’phadlarga bo’ling.
5. 2x3-11x2+12x+9 ko’phadni ikkihadga bo’linishini tekshiring.
6. x3-7x-6=0 tenglama ildizlarini toping va tenglikni chap qismini ko’paytuvchilarga ajrating.
7. Gorner sxamasi yordamida P(x) ni Q(x) ga bo’ling.
P(x) = х3 + 3х2-18х-40 Q(x) = х + 2
P(x) = х4 + 2х3-3х2 + 5х-2 Q(x) = 2х-3
8. Ko’phadni ikkihadga bo’lgandagi qoldiqni toping.
a) 2x3-5x2+3x+7 ni x-2 ga
b) x4+x3+x2-2x+4 ni x+3 ga d) x2+5x-6 ni x-2 ga
9. Berilgan ko’phadni ikkihadga bo’linishini qoldiqsiz bo’linishini ko’rsating.
a) 2x4-3x3-7x2+6x+8 va x-2 b) 2x3-5x2+1 ni x+1/2 ga
10. Gorner sxamasi yordamida P(x) ni Q(x) ga bo’ling.
P(x)=2x4-x3-9x2+13x-5 va Q(x)=x-2
11. Gorner sxamasi yordamida P(x) ni Q(x) ga bo’lgandagi qoldiqni toping.
P(x)= x6−4x4+x3−2x2+5 Q(x)=x+3
1. Gorner sxamasi yordamida P(x)=5x4 +5x3 +x2 −11 ko’phadni Q(x)= x−1 ko’phadga bo’ling.
2. Gorner sxamasi yordamida P(x)= x4+3x3+4x2−5x−47 ko’phadni Q(x)= x+3 ko’phadga bo’ling.
3. P(x)= x6+2x5−21x4−20x3+71x2+114x+45 Gorner sxemasi yordamida ko’phadning barcha butun yechimlarini toping
4. P(x)=3x6+9x5−28x4+6x3−30x2−30x+100 ko’phadni 2 va -5 sonlar ildizibo’lishini tekshiring. Berilgan ko’phadni x-2 va x+5 ko’phadlarga bo’ling.
5. 2x3-11x2+12x+9 ko’phadni ikkihadga bo’linishini tekshiring.
6. x3-7x-6=0 tenglama ildizlarini toping va tenglikni chap qismini ko’paytuvchilarga ajrating.
7. Gorner sxamasi yordamida P(x) ni Q(x) ga bo’ling.
P(x) = х3 + 3х2-18х-40 Q(x) = х + 2
P(x) = х4 + 2х3-3х2 + 5х-2 Q(x) = 2х-3
8. Ko’phadni ikkihadga bo’lgandagi qoldiqni toping.
a) 2x3-5x2+3x+7 ni x-2 ga
b) x4+x3+x2-2x+4 ni x+3 ga d) x2+5x-6 ni x-2 ga
9. Berilgan ko’phadni ikkihadga bo’linishini qoldiqsiz bo’linishini ko’rsating.
a) 2x4-3x3-7x2+6x+8 va x-2 b) 2x3-5x2+1 ni x+1/2 ga
10. Gorner sxamasi yordamida P(x) ni Q(x) ga bo’ling.
P(x)=2x4-x3-9x2+13x-5 va Q(x)=x-2
11. Gorner sxamasi yordamida P(x) ni Q(x) ga bo’lgandagi qoldiqni toping.
P(x)= x6−4x4+x3−2x2+5 Q(x)=x+3
.
1. Gorner sxemasi yordamida tenglamalarni yeching.
a) x4+7x2-24=0 ; b) x3+4x-80=0 ; d) 7x4-5x3+2x=0 ;
f) 9x4+4x3-13x2=0 ; g) x4-8x2-9=0
h) x4-x3-x2+x-5=0 ; i)x5+x4+3x=0 ; j) 6x2+7x-81=0 ;
k) x4+5x3-7x2-x-5=0 ; l) x3+3x2-4x-6=0 ; ; m) 6x2+5x-90=0 ;
2-misol f(x)=x4-13x2+36 ko’phadning ildizlarini toping.
3-misol. f(x)=2x5+x4-10x3-5x2+8x+4=0 ko’phadning ildizlarini toping.
4-misol. tenglamani yeching.
5-misol. x3+4x2-3x+5 ko’phadni Gorner sxemasidan foydalanib, x-1 ga bo’lishni bajaring.
6-misol. P(x)= x3-3x2+5x+7 ni 2x+1 ga bo’lishdan hosil bo’lgan qoldiqni toping.
7-misol. P4(x) = x4+x3+3x2+2x+2 ko’phadni x-1 ga bo’lishdan hosil bo’lgan qoldiqni toping
8-misol: P5(x)= 2x5 –x4-3x3+x-3 ni x-3 ga bo’lishdan hosil bo’lgan qoldiqni toping.
9-misol. F(x)=2x5+x4-10x3-5x2+8x+4 ko’phadning ildizlarini toping.
10-misol. F(x)=x4-13x2+36 ko’phadning ildizlarini toping.
11-misol. Gorner sxemasidan foydalanib, f(x) ko’phadning x=a nuqtadagi qiymatini toping.
1) f(x)= ; 2) f(x)= ; 3) f(x)=
1. Gorner sxemasi yordamida tenglamalarni yeching.
a) x4+7x2-24=0 ; b) x3+4x-80=0 ; d) 7x4-5x3+2x=0 ;
f) 9x4+4x3-13x2=0 ; g) x4-8x2-9=0
h) x4-x3-x2+x-5=0 ; i)x5+x4+3x=0 ; j) 6x2+7x-81=0 ;
k) x4+5x3-7x2-x-5=0 ; l) x3+3x2-4x-6=0 ; ; m) 6x2+5x-90=0 ;
2-misol f(x)=x4-13x2+36 ko’phadning ildizlarini toping.
3-misol. f(x)=2x5+x4-10x3-5x2+8x+4=0 ko’phadning ildizlarini toping.
4-misol. tenglamani yeching.
5-misol. x3+4x2-3x+5 ko’phadni Gorner sxemasidan foydalanib, x-1 ga bo’lishni bajaring.
6-misol. P(x)= x3-3x2+5x+7 ni 2x+1 ga bo’lishdan hosil bo’lgan qoldiqni toping.
7-misol. P4(x) = x4+x3+3x2+2x+2 ko’phadni x-1 ga bo’lishdan hosil bo’lgan qoldiqni toping
8-misol: P5(x)= 2x5 –x4-3x3+x-3 ni x-3 ga bo’lishdan hosil bo’lgan qoldiqni toping.
9-misol. F(x)=2x5+x4-10x3-5x2+8x+4 ko’phadning ildizlarini toping.
10-misol. F(x)=x4-13x2+36 ko’phadning ildizlarini toping.
11-misol. Gorner sxemasidan foydalanib, f(x) ko’phadning x=a nuqtadagi qiymatini toping.
1) f(x)= ; 2) f(x)= ; 3) f(x)=
x2+y2=(x+y)2-2xy
x3+y3=(x+y)3-3xy(x+y)
x4+y4= 2xy(x2+y2)-(x4+y4)+3(xy)2 и т.д.
Теорема 4. Элемент a поля K является корнем многочлена f(x) ненулевой степени (то есть f(a) = 0) тогда и только тогда, когда f(x) = (x − a) · p(x) для некоторого многочлена p(x)
6-misol. 3x4+3x3+4x2-50=0
7-misol. x4+x3-8x2-2x+8=0 ;
4-misol. tenglamalarni yeching.
a) x4+7x2-24=0 ; b) x3+4x-80=0 ; d) 7x4-5x3+2x=0 ;
e) x2+4x+4=0 ; f) 9x4+4x3-13x2=0 ; g) x4-8x2-9=0
h) x4-x3-x2+x-5=0 ; i)x5+x4+3x=0 ; j) 6x2+7x-81=0 ;
k) x4+5x3-7x2-x-5=0 ; l) x3+3x2-4x-6=0 ; ; m) 6x2+5x-90=0 ;
n) 5x5-4x4+3x3-2x2+x-3=0 ;
Do'stlaringiz bilan baham: |