Vektor maydonning yopiq sirt bo‘yicha oqimini hajm
bo‘yicha olingan integral orqali ifodalash haqidagi
Ostogradskiy teoremasi.
Yopiq sirt bo‘yicha olingan sirt integrali (vektor maydon oqimi) hamda shu sirt bilan chegaralangan fazoviy soha bo‘yicha olingan uch karrali integral orasidagi bog‘lanishni aniqlaymiz.
Teorema. Agar
vektor maydon proeksiyalari sohada o‘zining birinchi tartibli xususiy hosilasi bilan birga uzluksiz bo‘lsa, u holda yopiq sirt orqali vektor oqimini shu sirt bilan chegaralangan hajm bo‘yicha uch karrali integralni quyidagi formula bo‘yicha shakl almashtirish mumkin:
bu yerda integrallash sirtning tashqi tomoni bo‘yicha amalga oshiriladi (sirtga o‘tkazilgan normal fazoning tashqi qismiga yo‘nalgan). (61) formula Ostogradskiy formulasi deyiladi.
Isboti. Faraz qilaylik soha sirtning (va sohaning) sirtdagi proeksiyasi bo‘lsin, va esa shu sirtning pastki va yuqoridagi qismlarining tenglamasi bo‘lsin (10-chizma). Ushbu
10-chizma.
uch karrali integralni sirt integraliga almashtiramiz.
Buning uchun uni ikki karrali integralga keltiramiz va bo‘yicha integrallaymiz. Bundan:
soha ham sirtning, ham sirtning tekislikdagi proeksiyasi bo‘lgani uchun (11) formuladagi ikki karrali integrallarni ularga teng bo‘lgan
sirt integrallari bilan almashtirish mumkin. Natijada quyidagini hosil qilamiz:
Ikkinchi qo‘shiluvchida sirtning tashqi tomonini ichkisiga almashtirib, quyidagini hosil qilamiz:
bu yerda yopiq sirtning tashqi tomoni olinadi.
Quyidagi formulalar ham xuddi shunga o‘xshash hosil qilinadi:
(63), (64), (65) tengliklarni hadma-had qo‘shib, Ostrogradskiyning (61) formulasiga kelamiz, shuni isbotlash talab qilingan edi. Bu formula teoremaning shartini qanoatlantiruvchi sohalarga bo‘lish mumkin bo‘lgan istalgan fazoviy soha uchun to‘g‘ri bo‘ladi. Bu formula yordamida yopiq sirtlar bo‘yicha sirt integrallarini hisoblash qulay bo‘ladi.
fazoning sohasida
vektor maydon berilgan bo‘lsin, unda funksiyalar differensiallanuvchi funksiyalar.
Ta’rif. vektor maydonning diverginsiyasi (uzoqlashuvchisi) deb nuqtaning skalyar maydoniga aytiladi, u ko‘rinishda yoiladi va
formula bilan aniqlanadi, bu yerda xususiy hosilalar nuqtada hisoblanadi.
Divergensiyadan foydalanib, Ostogradskiyning (10) formulasini vektor shaklida qayta yozish mumkin:
Uni bunday ifodalash mumkin: yopiq sirt orqali o‘tuvchi (bu sirt tashqi normali yo‘nalishida orientirlangan) vektor maydon oqimi shu sirt bilan chegaralangan hajm bo‘yicha maydon divergensiyasidan olingan uch karrali integralga teng.
Divergensiyani hisoblashda quyidagi xossalardan foydalaniladi:
bu yerda skalyar maydonni aniqlovchi funksiya.
1.Divergensiyaning invariant ta’rifi. Divergensiyani (67) formula yordamida aniqlash koordinata o‘qlarini tanlash bilan bog‘liq. Ostogradskiyning (16) formulasidan foydalanib, divergensiyaning koordinatalar o‘qlarini tanlash bilan bog‘liq bo‘lmagan boshqa ta’rifini berish mumkin.
Bu formulaning o‘ng qismida uch karrali integral turibdi. O‘rta qiymat haqidagi ma’lum teoremaga ko‘ra bu integral hajm bilan integral osti funksiyasining sohaning biror nuqtasidagi qiymati ko‘paytmasiga teng. Shuning uchun (67) Ostogradskiy formulasini quyidagicha yozish mumkin:
yoki
Agar soha nuqtaga tortilsa yoki bo‘lsa, u holda nuqta ga intiladi. Natijada limitga o‘tib, quyidagini hosil qilamiz:
yoki
Endi divergensiyaning koordinata o‘qlarini tanlash bilan bog‘liq bo‘lmagan invariant ta’rifini berish mumkin.
Ta’rif. nuqtada vektor maydonning divergensiyasi deb, nuqtani o‘rab olgan yopiq sirt orqali o‘tuvchi maydon oqimining shu sirt bilan chegaralangan qismning hajmiga nisbatining bu hajm nuqtaga tortilgandagi, ya’ni dagi limitiga aytiladi.
2.Divergensiyaning fizik ma’nosi. (68) divergensiya tushunchasiga fizik talqin beramiz.
Faraz qilaylik, sohada oqayotgan suyuqlikning tezliklari maydoni berilgan bo‘lsin.
Ushbu
nisbat hajm birligiga bo‘lingan suyuqlik miqdorini aniqlaydi, ya’ni manbaning ( bo‘lganda) yoki ( bo‘lganda) o‘rta hajmiy quvvatini ifodalaydi. Bu nisbatning limiti
(17) divergensiya bo‘lib, u berilgan nuqtadagi suyuqlik sarfining hajm birligiga nisbatini ifodalaydi.
Agar bo‘lsa, suyuqlik sarfi musbat, ya’ni nuqtani o‘rab olgan cheksiz kichik sirt orqali tashqi normal yo‘nalishida suyuqlik oqib kirganidan ko‘proq oqib chiqib ketadi. Bunda nuqta manba bo‘ladi.
Agar bo‘lsa, u holda nuqta qurdum bo‘ladi. kattalik manbaning yoki qurdumning quvvatini ifodalaydi.
Agar bo‘lsa, u holda nuqtada na manba na qurdum bo‘ladi. (67) vektor shaklida yozilgan Ostogradskiy teoremasi oqayotgan suyuqlikning tezliklari maydonida yopiq sirt orqali oquvchi suyuqlikning oqimi hamma manbalarda qurdumlar quvvatlarining yig‘indisiga teng bo‘lishini, ya’ni qaralayotgan sohada vaqt birligi ichida paydo bo‘ladigan suyuqlik miqdoriga teng bo‘lishini ifodlaydi.
Do'stlaringiz bilan baham: |