1,Ҳисоблаш математикаси предмети



Download 5,29 Mb.
bet15/28
Sana31.05.2022
Hajmi5,29 Mb.
#621137
1   ...   11   12   13   14   15   16   17   18   ...   28
Bog'liq
xisoblash

Bajarilmagan

  1. Интерполяция масалаларининг мохияти куйидагидан иборат. Фараз килайлик, ораликда функция берилган булсин ёки унинг кийматлари маълум булсин. Шу ораликда аникланган ва хисоблаш учун кулай булган кандайдир функциялар синфини, масалан купхадлар синфини оламиз.

Берилган функцияни ораликда интерполяциялаш масаласи шу функцияни берилган синфнинг шундай функцияси билан такрибий равишда алмаштиришдан иборатки, берилган нукталарда билан бир хил кийматларни кабул килсин:

- тугунлар; интерполяцияловчи функция дейилади.

  1. Агар синфи сифатида даражали купхадлар синфи олинса, у холда интерполяциялаш алгебраик дейилади.

  2. Агар даврий функция булса, у холда синфи сифатида тригонометрик функциялар синфи олинади.

  3. Агар интерполяцияланадиган функция берилган нукталарда чексизга айланадиган булса, у холда синфи сифатида рационал функциялар синфини олиш маъкулдир.

56, Вандермонд детерминантини ҳисоблаш алгоритми.



Биз асосан алгебраик интерполяциялаш билан шу³улланамиз. Масаланинг куйилиши куйидагилардир. Даражаси - дан юкори булмаган шундай купхад куриладики у берилган та нукталарда

кийматларни кабул килсин
коэффициентларни шундай аниклаш керакки
(1)
купхад учун ушбу

тенгликлар бажарилсин. Бу тенгликларни очиб ёзсак, -ларга нисбати номаълумли та тенгламалар системаси хосил булади:
(3)
Бу системанинг детерминанти Вандермонд детерминантидир
57, Лагранж интерполияцион формуласи.
Биз асосан алгебраик интерполяциялаш билан шу³улланамиз. Масаланинг куйилиши куйидагилардир. Даражаси - дан юкори булмаган шундай купхад куриладики у берилган та нукталарда

кийматларни кабул килсин
коэффициентларни шундай аниклаш керакки
(1)
Биз -нинг ошкор куринишини топиш учун бошкача йул топамиз, аввало фундаментал купхадлар деб аталувчи -ларни, яъни
Кронекер саволи
шартларни каноатлантирадиган -чи даражали купхадларни курамиз, у холда
(4)
изланаётган купхад булади, хакикаттанхам

ва иккинчи томондан - даражали купхаддир.
Энди -нинг ошкор куринишини топамиз, булганда
Шунинг учун хам купхад булганда -га булинади. Шундай килиб -даражали купхаднинг -та булинувчилари бизга маълум,
бу ерда
келиб чикади.
Номаълум купайтирувчи С-ни эса шартдан топамиз.

Демак,

бу ифодани (4)-га куйиб, керакли купхадни аниклаймиз:
(5)


Download 5,29 Mb.

Do'stlaringiz bilan baham:
1   ...   11   12   13   14   15   16   17   18   ...   28




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish