1. Variatsiyaning xossalari


Variatsion xisobning asosiy lemmasi



Download 137,71 Kb.
bet3/5
Sana06.07.2022
Hajmi137,71 Kb.
#746718
1   2   3   4   5
Bog'liq
Variatsiya kurs ishi

Variatsion xisobning asosiy lemmasi. funksiya kesmada uzluksiz bo’lsin. Agar har bir uzluksiz funksiya uchun

tenglik bajarilsa, u holda kesmada bo’ladi.
Eslatma. Agar lemmada funksiyaga quyidagi shartlar qo’yilsa
1) ;
2) funksiya -tartibligacha hosilalari bilan birga uzluksiz va
tengsizliklarni qanoatlantiradi;
u holda lemma tasdig’i o’zgarmaydi.
Lemma isboti. Teskarisidan faraz qilaylik, ya’ni nuqtada bo’lsin. funksiyaning uzliksizligiga ko’ra shunday nuqtalar topiladiki oraliqda funksiya bitta ishoraga ega bo’ladi. Aniqlik uchun oraliqda deb hisoblaylik. funksiyani quyidagi ko’rinishda tanlab olamiz(6-rasm):

funksiya kesmada uzluksizligini tekshirib ko’rish mumkin. Shuningdek oraliqda .
Bundan

Bu natija lemma shartiga zid. Lemma isbotlandi.



6-rasm


2. Eyler tenglamasi.
Ushbu

funksionalni o’rganamiz, bunda funksional argumentiga qo’yish mumkin bo’lgan (bundan keyin bunday funksiyalarni joiz funksiyalar deb ataymiz) funksiyalar

shartlarni qanoatlantirishi talab qilinadi (4-rasm). funksiya uch marta differensiallanuvchi.

4-rasm
Funksionlani egri chiziq ustida ekstremumga erishishining zaruriy sharti funksional variatsiyasining nolga aylanishidan iboratligini yuqorida ko’rdik. Ushbu teorema qaralayotgan funksionalga qanday tadbiq qilinishini ko’rib chiqamz. Faraz qilaylik, (1) funksional ikki marta differensiallanuvchi joiz funksiya ustida ekstremumga erishsin. Bu funksiyaga yaqin va (2) shartlarni qanoatlantiruvchi ihtiyoriy funksiyani olamiz. Bir parametrli quyidagi chiziqlar oilasini tuzaylik:

Bu yerda, agar bo’lsa , agar bo’lsa funksiya hosil bo’ladi (5-rasm). ayirma funksiyaning variatsiyasi deb ataladi va orqali belgilanadi.

5-rasm
funksiyani ekstremumga tekshirish masalalarida erkli o’zgaruvchining orttirmasi muhim rol o’ynaganidek, variatsiona masalalarni yechishda variatsiya muhim rol o’ynaydi. Funksiyaning variatsiyasi ning funksiyasidan iborat. Bu funksiyani bir yoki bir necha marotaba differensiallash mumkin:


. . . . . . . . .

Shunday qilib chiziqlar oilasini qaraymiz. Bu oila da funksionalni ekstremumga erishtiruvchi funksiyani hamda da bu funksiyaga yaqin joiz funksiyani o’zida saqlaydi.
Agar (1) funksionalni faqatgina chiziqlar oilasi ustidagina qarasak, u holda funksional faqtgina ga bog’liq funksiyaga aylanadi:

Shuningdek funksiya nuqtada ekstremumga erishadi. U holda .
Boshqa tomondan

Bundan

bu yerda


Yuqorida ifodasida

va

tengliklarni hisobga olsak

tenglikni olamiz. Bundan

Ma’lumki ifoda funksionalning variatsiyasidan iborat va u orqali belgilangan. Hamda funksional ekstremumga erishishining zaruriy sharti uning variatsiyasini nolga tengligidan iborat: . (1) funksional uchun bu zaruriy shart

ko’rinishni oladi. Integral ostidagi ikkinchi qo’shiluvchiga bo’laklab interallash qoidasi tadbiq qilamiz:


Buni va , tengliklarni hisobga olsak yuqoridagi zaruriy shart quyidagi ko’rinishni oladi:

Bu yerda funksia (2) shartlarni qanoatlantiruvchi ihtiyoriy funksiya bo’lgani uchun funksiyani variatsion hisobning asosiy lemmasida ga qo’yilgan shartlarni qanoatlantirishi klib chiqadi. Bundan (1) funksionalning ekstremumga erishishining zaruriy sharti

ayniyatdan iboratligi kelib chiqadi. Demak qaralayotgan (1) funksional egri chiziq ustida ekstremumga erishishi uchun bu funksiya

tenglamani qanoatlantirishi zarur. Bu tenglama (1) funksional uchun Eyler tenglamasi deb ataladi.
Eyler tenglamasining integral chiziqlari ekstremallar deb ataladi. (1) funksional ekstremumga faqat ekstremallar ustida erishishi mumkin. Hullas (1) funksional ekstremumini aniqlash uchun

chegaravi masala yechiladi. Bu masala echimga ega bo’lmasligi yoki cheksiz ko’p yechimga ega bo’lishi yoki yagona yechimga ega bo’lishi mumkin. Agarda (3) masala yagona yechimga ega bo’lsa, bu yechim qaralayotgan variation masalaning yechimidan iborat bo’ladi.

Download 137,71 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish