1-mavzu. To’g’ri burchakli va ixtiyoriy sohalarda karrali integralni hisoblash. Ikki karrali integrallarda o`zgaruvchilarni almashtirish. Ikki karrali integralni geometriya va mexanik masalalarga tatbiqi



Download 147,36 Kb.
bet1/3
Sana24.07.2021
Hajmi147,36 Kb.
#127583
  1   2   3
Bog'liq
1-amaliy mashgulot (1)


1-mavzu. To’g’ri burchakli va ixtiyoriy sohalarda karrali integralni hisoblash. Ikki karrali integrallarda o`zgaruvchilarni almashtirish. Ikki karrali integralni geometriya va mexanik masalalarga tatbiqi.

Aytaylik sohada funksiya aniqlangan bo‘lsin. sohani egri chiziqlar to‘ri yordamida n ta sohashalarga bo‘lamiz. sohada nuqta olib, ni hisoblaymiz hamda quyidagi



(1)

funksiyaning soha uchun integral yig‘indisini tuzamiz. Bu yerda sohaning yuzasi.

Ta’rif. Agar (1) integral yig‘indining 0 ga intilgandagi limiti mavjud bo‘lib, u chekli songa teng bo‘lsa hamda uning qiymati sohaning bo‘linish usuliga va nuqtalarning tanlanishiga bog‘liq bo‘lmasa, u holda o‘sha son funksiyaning soha bo‘yicha ikki karrali integrali (Riman ma’nosidagi integrali) deyiladi va u



yoki

kabi belgilanadi. funksiya sohada integrallanuvchi deyiladi. Aks holda funkтsiya sohada integrallanuvchi emas deyiladi.



Shunday qilib,

(2)

Ta’rif. Agar uchun to‘plamni yuzalarining yig‘indisi dan kichik bo‘lgan sanoqli sondagi to‘g‘ri to‘rtburchaklar bilan qoplash mumkin bo‘lsa, u holda to‘plamning Lebeg o‘lchovi 0 ga teng deyiladi. Agar to‘plamni yuzalarining yig‘indisi etarlicha kichik bo‘lgan chekli sondagi to‘g‘ri to‘rtburchaklar bilan qoplash mumkin bo‘lsa, unda to‘plamning Jordan o‘lchovi 0 ga teng deyiladi.

Ta’rifdan ko‘rinadiki, Jordan o‘lchovi 0 ga teng to‘plamning Lebeg o‘lchovi ham 0 ga teng bo‘ladi. Teskarisi o‘rinli emas lekin Lebeg o‘lchovi 0 ga teng kompakt to‘plamning Jordan o‘lchovi ham 0 ga teng bo‘ladi. Jordan o‘lchovi 0 ga teng bo‘lgan to‘plamlarning chekli sondagi yig‘indisining Jordan o‘lchovi, Lebeg o‘lchovi 0 ga teng bo‘lgan to‘plamlarning sanoqli sondagi yig`indisining Lebeg o‘lchovi 0 ga teng bo`ladi.



Teorema. (Lebeg teoremasi). Agar funksiya o‘lchovga ega bo‘lgan yopiq sohada chegaralangan va bu sohadagi Lebeg o‘lchovi 0 ga teng bo‘lgan sohada uzilishga ega bo‘lib, qolgan barcha nuqtalarda uzluksiz bo‘lsa, u holda funksiya sohada integrallanuvchi bo‘ladi.

Ikki karrali integrallar amaliyotda takroriy integralga keltirish yordamida hisoblanadi. Biz soha to‘g‘ri to‘rtburchakli va egri chiziqli trapetsiya bo‘lgan 2 ta holda ikki karrali integralni takroriy integralga keltirish haqidagi teoremalarni keltiramiz.




Download 147,36 Kb.

Do'stlaringiz bilan baham:
  1   2   3




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish