Tarix Burchak va radius tushunchasi miloddan avvalgi birinchi ming yillikda ma'lum bo'lgan. Yunon astronomi Gipparx (miloddan avvalgi 190-120) jadval yaratgan bo'lib, unda akkord uzunliklari turli burchaklar uchun berilgan. Uning samoviy jismlarning holatini aniqlash uchun qutb koordinatalarini ishlatganligi haqida dalillar mavjud. Arximed o'zining "Spirallar" asarida Arximed spirali deb ataladigan funktsiyani tavsiflaydi, uning radiusi burchakka bog'liq. Yunon tadqiqotchilarining asarlari, ammo koordinata tizimining yaxlit ta'rifiga aylanmadi.
9-asrda fors matematikasi Xabbash al-Xasib (al-Marvazi) kartografik proektsiyalar va sferik trigonometriya usullaridan foydalangan holda qutb koordinatalarini sharning bir nuqtasida markazlashgan boshqa koordinatalar tizimiga aylantirdi, bu holda qiblani aniqladi. - Makka tomon yo'nalish. Fors astronomi Abu Rayxon Biruniy (973-1048) qutb koordinatalar tizimining tavsifiga o'xshash fikrlarni ilgari surdi. U birinchi bo'lib osmon sferasining qutbli teng-azimutal teng masofaga proektsiyasini tasvirlab berdi, taxminan 1025 yil.
Formal koordinatalar tizimi sifatida qutb koordinatalarini kiritish haqida har xil versiyalar mavjud. Kelib chiqishi va izlanishlarining to'liq tarixi Garvard professori Julian Louell Kulidjning "Polar koordinatalarning kelib chiqishi" asarida tasvirlangan. Gregoire de Saint-Vincent va Bonaventure Cavalieri mustaqil ravishda 17-asrning o'rtalarida shunga o'xshash tushunchaga kelishdi. Sen-Vinsent 1625 yilda o'z asarlarini nashr etib, 1625 yilda shaxsiy yozuvlarda qutb tizimini tasvirlab bergan; va Kavalyeri o'z asarlarini 1635 yilda, qayta ishlangan versiyasini 1653 yilda nashr etdi. Kavalyeri Arximed spirali bilan chegaralangan maydonni hisoblash uchun qutb koordinatalarini ishlatgan. Keyinchalik Blez Paskal parabolik yoylarning uzunligini hisoblash uchun qutb koordinatalarini ishlatdi.
1671 yilda yozilgan, 1736 yilda bosilgan "Fluxions Method" kitobida ser Isaak Nyuton qutb koordinatalari orasidagi o'zgarishni o'rganib chiqdi va uni ettinchi usul deb atadi; Spirallar uchun" ("English Seventh Manner; For Spirals") va boshqa to'qqizta koordinatalar tizimi. 1691 yilda Acta eruditorum jurnalida chop etilgan maqolasida Yoqub Bernulli "mos ravishda qutb va qutb o'qi" deb nomlagan "on-layn" tizimidan foydalangan. Koordinatalar qutbdan masofa va qutb o'qidan burchak sifatida ko'rsatilgan. Bernulli ishi ushbu koordinata tizimida aniqlangan egri chiziqlar radiusini topish masalasiga bag'ishlangan.
"Polar koordinatalar" atamasining kiritilishi Gregorio Fontanaga tegishli. 18-asrda u italiyalik mualliflarning leksikoniga kiritilgan. Bu atama ingliz tiliga 1816 yilda Jorj Tovok tomonidan ijro etilgan Silvestr Lakroaning "Differentsial va integral hisob" traktatining tarjimasi orqali kirib keldi.Uchchamli kosmos uchun qutb koordinatalarini birinchi bo'lib Aleksey Klerod taklif qilgan va Leonard Eyler birinchi bo'lib uni yaratgan. mos keladigan tizim.
Koordinata tizimi Koordinata tizimi bu koordinatalar usulini amalga oshiradigan ta'riflar majmuasi, ya'ni raqamlar yoki boshqa belgilar yordamida nuqta yoki jismning holatini va harakatini aniqlash usulidir. Muayyan nuqtaning o'rnini belgilaydigan raqamlar yig'indisi shu nuqtaning koordinatalari deb ataladi.
Matematikada koordinatalar - bu ma'lum atlasning ma'lum bir xaritasidagi manifoldning nuqtalari bilan bog'liq bo'lgan sonlar to'plami.
Elementar geometriyada koordinatalar - bu nuqtaning tekislikdagi va fazodagi o'rnini belgilaydigan kattaliklar. Samolyotda nuqta pozitsiyasi ko'p hollarda ikkita to'g'ri chiziqdan (koordinata o'qlari) bir burchakda (kelib chiqishi) to'g'ri burchak bilan kesishgan masofalar bilan belgilanadi; koordinatalardan biri ordinat, ikkinchisi esa abstsissa deb ataladi. Dekart tizimiga ko'ra kosmosda nuqta pozitsiyasi bir nuqtada bir-biriga to'g'ri burchak bilan kesilgan uchta koordinatali tekislikdan masofalar yoki sharsimon koordinatalar bilan belgilanadi, bu erda kelib chiqishi sharning markazida joylashgan.
Geografiyada koordinatalar (taxminan) sferik koordinatalar tizimi sifatida tanlanadi - kenglik, uzunlik va ma'lum umumiy darajadan balandlik (masalan, okean). Geografik koordinatalarga qarang.
Astronomiyada osmon koordinatalari tartiblangan juft burchak miqdoridir (masalan, o'ng ko'tarilish va moyillik), ular yordamida osmon sferasidagi yoritgichlar va yordamchi nuqtalarning holatini aniqlaydi. Astronomiyada osmon koordinatalarining turli tizimlaridan foydalaniladi. Ularning har biri mohiyatan sferik koordinatalar tizimidir (radial koordinatasiz) tegishli tanlangan asosiy tekislik va kelib chiqishi bilan. Osmon koordinatalar tizimi asosiy tekislikni tanlashiga qarab gorizontal (ufq tekisligi), ekvatorial (ekvatorial tekislik), ekliptik (ekliptik tekislik) yoki galaktik (galaktik tekislik) deb nomlanadi.