Лекция 7 Дифференциальные уравнения второго порядка



Download 372 Kb.
bet1/5
Sana01.04.2022
Hajmi372 Kb.
#522642
TuriЛекция
  1   2   3   4   5
Bog'liq
7- лекция.ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВТОРОГО ПОРЯДКА


Лекция 7


Дифференциальные уравнения второго порядка


Вопросы:

  1. Дифференциальные уравнения второго порядка.

  2. Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами. Их решение.

  3. Решение линейных однородных уравнений с постоянными коэффициентами.

  4. Метод подбора частного решения линейного неоднородного уравнения второго порядка.



9.4.1. Дифференциальные уравнения второго порядка
Определение 9.17. Дифференциальным уравнением второго порядка называется дифференциальное уравнение, которое имеет вид
(9.6)
Определение 9.18. Общим решением дифференциального уравнения второго порядка называется функция которая зависит от произвольных постоянных С1 и С2 и при этом выполнены условия:
1) она удовлетворяет дифференциальному уравнению (9.6) при любых конкретных значениях С1 и С2;
2) каковы бы ни были начальные условия при , существуют , такие, что функции и удовлетворяют начальным условиям.
Функция — частное решение (9.6).
Рассмотрим наиболее простой вид дифференциальных уравнений второго порядка — линейные дифференциальные уравнения с постоянными коэффициентами.


9.4.2. Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами
Определение 9.19. Дифференциальное уравнение второго порядка называется линейным, если оно содержит только первые степени , т.е. имеет вид
, (9.7)
где могут быть некоторыми функциями от х, причем . Мы рассмотрим только случай, когда — некоторые константы. Если уравнение называется неоднородным. Если , т.е. уравнение вида
(9.8)
называется однородным.
Теорема 1. Если и — решения уравнения , такие, что их отношение не равно постоянной величине то линейная комбинация этих функций является общим решением уравнения.
Теорема 2. Общее решение неоднородного уравнения можно составить как сумму общего решения соответствующего однородного уравнения и любого частного решения неоднородного уравнения.

Таким образом, чтобы найти решение неоднородного линейного уравнения, необходимо уметь решать однородные уравнения.



Download 372 Kb.

Do'stlaringiz bilan baham:
  1   2   3   4   5




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish