3nd year student of the Faculty of Mathematics of Samarkand State University



Download 20,06 Kb.
Sana06.07.2022
Hajmi20,06 Kb.
#746333
Bog'liq
matematika


Ismatullayeva Gulrukh
3nd year student of the Faculty of Mathematics of Samarkand State University
(Samarkand, Uzbekistan)

Solve mathematical olympiad problems Using the Stolz's theorem


Annotation: This thesis presedet and solves the problems of the Mathematical Olympiad that can be solved using the sltoz-cesaro theorm
In mathematics tha Stolez-Casero theorm is a criterion for proving the convergense of a sequence . The theorem is named after mathematicians. Otto Stolz and Ernesto Cesaro, who stated and proved it for the first time
The Stolz-Cesaro theorem can be viewed as a generalization of the Cesaro mean but also as a Hopital's rule for sequences
This theorem can also be used not only to solve the problems of the Mathematical Olympiad among university students but also to solve the problems of the . Olympiad for school and high school students.The folloving is a summary of this theorem and some of the Mathematical Olympiad problems that can be solved on the basic of this theorem

Stolz-Cesaro theorem


The famous Stolz-Cesaro Theorem states that if yn is a strictly increasing sequence
yn+1 > yn n=1,2,3,…
with
+
and

then we have

Problem 1
Prove that the limit is 1.

Solution
We use the Stolz-Cesaro Theorem to calculate the limit


(i) n = 1,2,3,…..
n=1,2,3,…..
(ii)
L = = 1
Based on the conclusion of the theorem
L =
Problem 2
If a>0, evaluase
Solution
an =
bn = lnn
(i) bn+1 > bn n=1,2,3,….
ln(n+1)>lnn
(ii)
L =
L =
Problem3

Determine the value of Lasenjeri limit :
Solution
an =
bn = n
(i) bn+1 > b n = 1,2,3,….
n+1 > n
(ii) = +
L =
L =
According to the Stirling formula
= 1 n!
= = = =
L =
( ) = e-1
Problem4
, xn > 0
(
Solution
;
c1 = x1 c2 = c3 = …. cn =
( = ,
Here for e× function is continuous , it can be solved according to limit degree in (xeR)
=
According to the Stolz-Cesaro theorem :
an =
bn = n
(i) bn+1 > bn n+1 > n
(ii) +
L = = =
= =

Referances:



  1. Gaziyev A, Isroilov I, Yakhshibaev MU “Examples and problems from mathematical analysis”, part 1 (textbook). Turan-Iqbol Publishing House.Toshkent (2009). 480

  2. D. Acu, Some algorithms for the sums of the integer powers, Math.Mag. 61 (1988) 189-191.

  3. D. Bloom, An algorithms for the sums of the integer powers, Math.Mag. 66 (1993) 304-305.

  4. C. Kelly, An algorithms for sums of integer powers, Math.Mag. 57 (1984) 296-297.

  5. G. Mackiw, A combinatorial approach to the sums of the integer powers, Math.Mag. 73 (2000)

44-46

  1. H . J . Schultz, The sum of the kth power of the first n integer, Amer.Math.Monthly 87 (1980) 478-481

Download 20,06 Kb.

Do'stlaringiz bilan baham:




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish