2. Ikki nuqta orasidagi masofa Fazoda Dekart koordinatalar sistemasi va ???? ????1, ????, ????1, ???? ????2, ????2, ????2 nuqtalar berilgan. Bu nuqtalar orasidagi masofani topamiz



Download 15,26 Kb.
Sana16.01.2022
Hajmi15,26 Kb.
#372289
Bog'liq
isoqbek


2. Ikki nuqta orasidagi masofa Fazoda Dekart koordinatalar sistemasi va ๐ด ๐‘ฅ1, ๐‘ฆ, ๐‘ง1 , ๐ต ๐‘ฅ2, ๐‘ฆ2, ๐‘ง2 nuqtalar berilgan. Bu nuqtalar orasidagi masofani topamiz. ๐ด1 va ๐ต1 nuqtalar mos ravishda ๐ด va ๐ต ning ๐‘‚๐‘ฅ๐‘ฆ tekislikdagi proektsiyalari boโ€™lsin. Tekislikda ikki nuqta orasidagi masofa formulasiga koโ€™ra ๐ด1๐ต1 = (๐‘ฅ2โˆ’๐‘ฅ1) 2 + (๐‘ฆ2โˆ’๐‘ฆ1) 2 boโ€™ladi. ๐ด nuqtadan ๐ด1๐ต1 kesmaga parallel chiziq oโ€™tkazib, uni ๐ต2 bilan belgilaymiz. U holda ๐ต๐ต2 kesmaning uzunligi ๐‘ง2 โˆ’ ๐‘ง1 ga teng. ๐ด๐ต = (๐ด๐ต2) 2 + (๐ต๐ต2) 2 = = (๐‘ฅ2โˆ’๐‘ฅ1) 2 + (๐‘ฆ2โˆ’๐‘ฆ1) 2 + (๐‘ง2โˆ’๐‘ง1) 2 3. Fazoda tekislik va uning tenglamasi Faraz qilaylik, fazoda Dekart koordinatalar sistemasi, ๐‘ƒ ๐‘Ž1, ๐‘1, ๐‘1 hamda (๐‘Ž2, ๐‘2, ๐‘2) nuqtalar berilgan boโ€™lsin. Bu ikki nuqtadan bir xil masofada joylashgan nuqtalarning geometrik oโ€™rni tekislikni ifodalaydi. Bu tekislikda ixtiyoriy ๐‘€ ๐‘ฅ, ๐‘ฆ, ๐‘ง nuqtani olaylik. Ikki nuqta orasidagi masofani topish formulasiga koโ€™ra ๐‘€๐‘ƒ = (๐‘ฅ โˆ’ ๐‘Ž1) 2+(๐‘ฆ โˆ’ ๐‘1) 2+(๐‘ง โˆ’ ๐‘1) 2 , ๐‘€๐‘„ = (๐‘ฅ โˆ’ ๐‘Ž2) 2+(๐‘ฆ โˆ’ ๐‘2) 2+(๐‘ง โˆ’ ๐‘2) 2 boโ€™ladi. Agar ๐‘€๐‘ƒ = ๐‘€๐‘„ boโ€™lishini eโ€™tiborga olsak, unda (๐‘ฅ โˆ’ ๐‘Ž1) 2+(๐‘ฆ โˆ’ ๐‘1) 2+(๐‘ง โˆ’ ๐‘1) 2= = (๐‘ฅ โˆ’ ๐‘Ž2) 2+(๐‘ฆ โˆ’ ๐‘2) 2+(๐‘ง โˆ’ ๐‘2) 2 Bu tenglikning ikkala tomonini kvadratga oshiramiz: ๐‘Ž1 2 + ๐‘1 2 + ๐‘1 2 โˆ’ 2๐‘Ž1๐‘ฅ โˆ’ 2๐‘1๐‘ฆ โˆ’ 2๐‘1๐‘ง + ๐‘ฅ 2 + ๐‘ฆ 2 + ๐‘ง 2 = = ๐‘Ž2 2 + ๐‘2 2 + ๐‘2 2 โˆ’ 2๐‘Ž2๐‘ฅ โˆ’ 2๐‘2๐‘ฆ โˆ’ 2๐‘2๐‘ง + ๐‘ฅ 2 + ๐‘ฆ 2 + ๐‘ง 2 Bu tenglikni quyidagicha ham yzish mumkin. 2(๐‘Ž2โˆ’๐‘Ž1)๐‘ฅ + 2(๐‘2โˆ’๐‘1)๐‘ฆ + 2(๐‘2โˆ’๐‘1)๐‘ง + +๐‘Ž1 2 + ๐‘1 2 + ๐‘1 2 โˆ’ ๐‘Ž2 2 โˆ’ ๐‘2 2 โˆ’ ๐‘2 2 = 0 ๐ด = 2(๐‘Ž2โˆ’๐‘Ž1), ๐ต = 2(๐‘2โˆ’๐‘1), ๐ถ = 2(๐‘2โˆ’๐‘1), ๐ท = ๐‘Ž1 2 + ๐‘1 2 + +๐‘1 2 โˆ’ ๐‘Ž2 2 โˆ’ ๐‘2 2 โˆ’ ๐‘2 2 belgilashlarni kiritsak, ushbu ๐ด๐‘ฅ + ๐ต๐‘ฆ + ๐ถ๐‘ง + ๐ท = 0 (1) tenglamaga kelamiz. (1) tenglama fazoda tekisliknig umumiy tenglamasi deyiladi. Bu yerda ๐ด, ๐ต, ๐ถ, oโ€™zgarmas sonlar boโ€™lib, ular tekislikning fazodagi vaziyatini toโ€™la aniqlaydi. Endi (1) tenglamaning xususiy hollarini qaraylik. 1 ยฐ . ๐ด โ‰  0, ๐ต โ‰  0, ๐ถ โ‰  0,๐ท = 0 boโ€™lsin. U holda ๐ด๐‘ฅ + ๐ต๐‘ฆ + ๐ถ๐‘ง = 0 tenglama hosil boโ€™lib, bu tenglama bilan aniqlangan tekislik koordinatalar boshi (0,0,0) nuqtadan oโ€™tadi. 2 ยฐ . ๐ด โ‰  0, ๐ต โ‰  0,๐ท โ‰  0, ๐ถ = 0. Bu holda biz ๐ด๐‘ฅ + ๐ต๐‘ฆ + ๐ท = 0 tenglamaga ega boโ€™lamiz. Bu tenglama bilan aniqlangan tekislik ๐‘‚๐‘ง oโ€™qiga parallel tekislikdir. 3 ยฐ . ๐ด โ‰  0, ๐ถ โ‰  0,๐ท โ‰  0, ๐ต = 0. Bu holda ๐ด๐‘ฅ + ๐ถ๐‘ง + ๐ท = 0 tekislik ๐‘‚๐‘ฆ oโ€™qiga parallel tekislikdir. 4 ยฐ . ๐ด = 0, ๐ต โ‰  0, ๐ถ โ‰  0,๐ท โ‰  0, Bu holda ๐ต๐‘ฆ + ๐ถ๐‘ง + ๐ท = 0 tekislik ๐‘‚๐‘ฅ oโ€™qiga parallel tekislikdir. 5 ยฐ . ๐ด = 0, ๐ต = 0, ๐ถ โ‰  0,๐ท โ‰  0. U holda (1) tenglama ๐ถ๐‘ง + ๐ท = 0 koโ€™rinishga ega boโ€™lib, u ๐‘‚๐‘ฅ๐‘ฆ kordinatalar tekisligiga parallel tekislikdir. 6 ยฐ . ๐ด = 0, ๐ถ = 0, ๐ต โ‰  0,๐ท โ‰  0. U holda (1) tenglama By+๐ท = 0 koโ€™rinishga ega boโ€™lib, u ๐‘‚๐‘ฅ๐‘ง kordinatalar tekisligiga parallel tekislikdir. 7 ยฐ . ๐ต = ๐ถ = 0, ๐ด โ‰  0,๐ท โ‰  0. U holda (1) tenglama Ax+๐ท = 0 koโ€™rinishga ega boโ€™lib, u ๐‘‚๐‘ฆ๐‘ง kordinatalar tekisligiga parallel tekislikdir. Tekislikning oโ€™qlardan ajratgan kesmalar boโ€™yicha tenglamasi tenglmasi ๐‘ฅ ๐‘Ž + ๐‘ฆ ๐‘ + ๐‘ง ๐‘ = 1 (2) koโ€™rinishga ega. Fazoda ๐ด1๐‘ฅ + ๐ต1๐‘ฆ + ๐ถ1๐‘ง = 0 ๐ด2๐‘ฅ + ๐ต2๐‘ฆ + ๐ถ2๐‘ง = 0 (3) tenglamalar bilan aniqlangan ๐‘‡1 va ๐‘‡2 tekisliklar berilgan boโ€™lsin. Bu ikki tekislik parallel boโ€™lishi uchun ๐ด1 ๐ด2 = ๐ต1 ๐ต2 = ๐ถ1 ๐ถ2 shart bajarilishi zarur va yetarli. ๐‘‡1 va ๐‘‡2 tekisliklar perpendikulyar boโ€™lishi uch
Download 15,26 Kb.

Do'stlaringiz bilan baham:




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
ัŽั€ั‚ะดะฐ ั‚ะฐะฝั‚ะฐะฝะฐ
ะ‘ะพา“ะดะฐ ะฑะธั‚ะณะฐะฝ
ะ‘ัƒะณัƒะฝ ัŽั€ั‚ะดะฐ
ะญัˆะธั‚ะณะฐะฝะปะฐั€ ะถะธะปะผะฐะฝะณะปะฐั€
ะญัˆะธั‚ะผะฐะดะธะผ ะดะตะผะฐะฝะณะปะฐั€
ะฑะธั‚ะณะฐะฝ ะฑะพะดะพะผะปะฐั€
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan boโ€™yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
boโ€™yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish