2. Ikki nuqta orasidagi masofa Fazoda Dekart koordinatalar sistemasi va ๐ด ๐ฅ1, ๐ฆ, ๐ง1 , ๐ต ๐ฅ2, ๐ฆ2, ๐ง2 nuqtalar berilgan. Bu nuqtalar orasidagi masofani topamiz. ๐ด1 va ๐ต1 nuqtalar mos ravishda ๐ด va ๐ต ning ๐๐ฅ๐ฆ tekislikdagi proektsiyalari boโlsin. Tekislikda ikki nuqta orasidagi masofa formulasiga koโra ๐ด1๐ต1 = (๐ฅ2โ๐ฅ1) 2 + (๐ฆ2โ๐ฆ1) 2 boโladi. ๐ด nuqtadan ๐ด1๐ต1 kesmaga parallel chiziq oโtkazib, uni ๐ต2 bilan belgilaymiz. U holda ๐ต๐ต2 kesmaning uzunligi ๐ง2 โ ๐ง1 ga teng. ๐ด๐ต = (๐ด๐ต2) 2 + (๐ต๐ต2) 2 = = (๐ฅ2โ๐ฅ1) 2 + (๐ฆ2โ๐ฆ1) 2 + (๐ง2โ๐ง1) 2 3. Fazoda tekislik va uning tenglamasi Faraz qilaylik, fazoda Dekart koordinatalar sistemasi, ๐ ๐1, ๐1, ๐1 hamda (๐2, ๐2, ๐2) nuqtalar berilgan boโlsin. Bu ikki nuqtadan bir xil masofada joylashgan nuqtalarning geometrik oโrni tekislikni ifodalaydi. Bu tekislikda ixtiyoriy ๐ ๐ฅ, ๐ฆ, ๐ง nuqtani olaylik. Ikki nuqta orasidagi masofani topish formulasiga koโra ๐๐ = (๐ฅ โ ๐1) 2+(๐ฆ โ ๐1) 2+(๐ง โ ๐1) 2 , ๐๐ = (๐ฅ โ ๐2) 2+(๐ฆ โ ๐2) 2+(๐ง โ ๐2) 2 boโladi. Agar ๐๐ = ๐๐ boโlishini eโtiborga olsak, unda (๐ฅ โ ๐1) 2+(๐ฆ โ ๐1) 2+(๐ง โ ๐1) 2= = (๐ฅ โ ๐2) 2+(๐ฆ โ ๐2) 2+(๐ง โ ๐2) 2 Bu tenglikning ikkala tomonini kvadratga oshiramiz: ๐1 2 + ๐1 2 + ๐1 2 โ 2๐1๐ฅ โ 2๐1๐ฆ โ 2๐1๐ง + ๐ฅ 2 + ๐ฆ 2 + ๐ง 2 = = ๐2 2 + ๐2 2 + ๐2 2 โ 2๐2๐ฅ โ 2๐2๐ฆ โ 2๐2๐ง + ๐ฅ 2 + ๐ฆ 2 + ๐ง 2 Bu tenglikni quyidagicha ham yzish mumkin. 2(๐2โ๐1)๐ฅ + 2(๐2โ๐1)๐ฆ + 2(๐2โ๐1)๐ง + +๐1 2 + ๐1 2 + ๐1 2 โ ๐2 2 โ ๐2 2 โ ๐2 2 = 0 ๐ด = 2(๐2โ๐1), ๐ต = 2(๐2โ๐1), ๐ถ = 2(๐2โ๐1), ๐ท = ๐1 2 + ๐1 2 + +๐1 2 โ ๐2 2 โ ๐2 2 โ ๐2 2 belgilashlarni kiritsak, ushbu ๐ด๐ฅ + ๐ต๐ฆ + ๐ถ๐ง + ๐ท = 0 (1) tenglamaga kelamiz. (1) tenglama fazoda tekisliknig umumiy tenglamasi deyiladi. Bu yerda ๐ด, ๐ต, ๐ถ, oโzgarmas sonlar boโlib, ular tekislikning fazodagi vaziyatini toโla aniqlaydi. Endi (1) tenglamaning xususiy hollarini qaraylik. 1 ยฐ . ๐ด โ 0, ๐ต โ 0, ๐ถ โ 0,๐ท = 0 boโlsin. U holda ๐ด๐ฅ + ๐ต๐ฆ + ๐ถ๐ง = 0 tenglama hosil boโlib, bu tenglama bilan aniqlangan tekislik koordinatalar boshi (0,0,0) nuqtadan oโtadi. 2 ยฐ . ๐ด โ 0, ๐ต โ 0,๐ท โ 0, ๐ถ = 0. Bu holda biz ๐ด๐ฅ + ๐ต๐ฆ + ๐ท = 0 tenglamaga ega boโlamiz. Bu tenglama bilan aniqlangan tekislik ๐๐ง oโqiga parallel tekislikdir. 3 ยฐ . ๐ด โ 0, ๐ถ โ 0,๐ท โ 0, ๐ต = 0. Bu holda ๐ด๐ฅ + ๐ถ๐ง + ๐ท = 0 tekislik ๐๐ฆ oโqiga parallel tekislikdir. 4 ยฐ . ๐ด = 0, ๐ต โ 0, ๐ถ โ 0,๐ท โ 0, Bu holda ๐ต๐ฆ + ๐ถ๐ง + ๐ท = 0 tekislik ๐๐ฅ oโqiga parallel tekislikdir. 5 ยฐ . ๐ด = 0, ๐ต = 0, ๐ถ โ 0,๐ท โ 0. U holda (1) tenglama ๐ถ๐ง + ๐ท = 0 koโrinishga ega boโlib, u ๐๐ฅ๐ฆ kordinatalar tekisligiga parallel tekislikdir. 6 ยฐ . ๐ด = 0, ๐ถ = 0, ๐ต โ 0,๐ท โ 0. U holda (1) tenglama By+๐ท = 0 koโrinishga ega boโlib, u ๐๐ฅ๐ง kordinatalar tekisligiga parallel tekislikdir. 7 ยฐ . ๐ต = ๐ถ = 0, ๐ด โ 0,๐ท โ 0. U holda (1) tenglama Ax+๐ท = 0 koโrinishga ega boโlib, u ๐๐ฆ๐ง kordinatalar tekisligiga parallel tekislikdir. Tekislikning oโqlardan ajratgan kesmalar boโyicha tenglamasi tenglmasi ๐ฅ ๐ + ๐ฆ ๐ + ๐ง ๐ = 1 (2) koโrinishga ega. Fazoda ๐ด1๐ฅ + ๐ต1๐ฆ + ๐ถ1๐ง = 0 ๐ด2๐ฅ + ๐ต2๐ฆ + ๐ถ2๐ง = 0 (3) tenglamalar bilan aniqlangan ๐1 va ๐2 tekisliklar berilgan boโlsin. Bu ikki tekislik parallel boโlishi uchun ๐ด1 ๐ด2 = ๐ต1 ๐ต2 = ๐ถ1 ๐ถ2 shart bajarilishi zarur va yetarli. ๐1 va ๐2 tekisliklar perpendikulyar boโlishi uch
Do'stlaringiz bilan baham: |