Переменные проекта представляют собой те входные параметры проекта, значения
которых предполагается менять. К ним обычно относятся такие геометрические
параметры, как длина, радиус, радиус галтели и толщина, но это также могут быть
дескрипторы (описатели) свойств материалов, местоположения нагрузок или сил связей.
Пользователь должен указать минимальные и максимальные значения или величины
отклонений для каждой переменной проекта.
•
Переменные состояния - это характеристики отклика модели, которые используются для
оценки проекта на основе установленных пользователем критериев. Типичными
переменными состояния являются напряжения, прогибы, температуры и собственные
частоты. Для каждой переменной указываются верхние и/или нижние пределы, которые
представляют собой инженерные критерии приемлемости проекта.
•
Целевая функция - единственная переменная, характеризующая проект в целом;
представляет собой функцию, минимум которой требуется найти. В качестве целевой
функции может быть определена любая величина, которая выражается через параметр
программы ANSYS, включая и введенные пользователем формулы. К целевым функциям
могут относиться суммарный вес, стоимость, масса материала и любые другие
подходящие параметры.
34
Пользователь задает параметризованные исходные данные для начального варианта
проекта, переменные проекта, переменные состояния вместе с их предельными значениями и
целевую функцию. В процессе оптимизации выбираются новые значения переменных
проекта, анализируется новый вариант проекта, оцениваются переменные состояния, а затем
результаты используются для повторения всей последовательности действий в попытке
минимизировать целевую функцию.
В программе ANSYS используются два метода оптимизации: метод аппроксимации и
метод первого порядка.
В первом случае используются аппроксимирующие функции, с помощью которых
осуществляется приближенное описание результатов анализа, полученных для
предшествующего варианта разработки. Минимум приближенной целевой функции
отыскивается методом минимизирующей последовательности, затем создается следующий
вариант проекта. Функция цели рассматривается в программе как функция без ограничений -
за счет введения штрафных членов, ответственных за ограничения переменных проекта и
переменных состояния.
Оптимизация на основе метода первого порядка относится к технологии, которая
использует информацию о производных целевой функции - о градиентах зависимых
переменных от переменных проекта. Программа определяет градиент и форму функции цели
с помощью метода адаптивного спуска. На каждой итерации определяется направление
спуска, а величина вектора смещения выбирается таким образом, чтобы минимизировать
целевую функцию.
Сопоставление этих двух методов оптимизации показывает, что первый является более
эффективным, однако метод первого порядка более надежен. В программе ANSYS
реализовано последовательное использование обоих методов. Обычной ситуацией является
применение метода аппроксимации для сужения области поиска и последующее
использование метода первого порядка для уточнения решения.
В дополнение к традиционным процедурам получения оптимального проекта программа
ANSYS предлагает ряд других средств и способов оптимизации.
Способы оптимизации помогают пользователю представить и оценить поведение системы
в пространстве ее параметров. Поскольку может оказаться, что минимизация целевой
35
функции не обязательна, то при использовании этих средств построение ее не требуется.
Перечень доступных способов оптимизации приведен ниже.
•
Do'stlaringiz bilan baham: |