Yuqori tartibli chiziqli bir jinsli differensial tenglamalar’’



Download 160,17 Kb.
bet4/8
Sana20.11.2022
Hajmi160,17 Kb.
#869308
1   2   3   4   5   6   7   8
Bog'liq
kurs ishi Vohidov

y =c1ek x + c2ek x .
ko’rinishda bo’ladi.
Misol.
y’’+y-2y = 0 tenglamaning umumiy yechimi topilsin.
Yechish.
Bu tenglamaning xarakteristik tenglamasini yozamiz:
k2+ k-2=0
Uni yechib, k1=1 va k2=-2 topib, quyidagi umumiy yechimni hosil qilamiz:
y =c1ex + c2e-2x .
2. Xarakteristik tenglamaning ildizlari k1 va k2 haqiqiy va teng sonlar bo’lsin: k1=k2.
Bu xolda k1=k2= .
Bitta hususiy yechim ma’lum
y1 = ek x = e
Ikkinchi xususiy yechimni y2 =u(x)ek x shaklda izlaymiz:

y2 =(u (x) + k1 u(x))ek x ,


y2 ’’ =(u’’ (x) +2k1 u(x) + k21 u(x))ek x .

Bularni (4.3) ga qo’yib va soddalashtirib


(u’’ (x) +(2k1+a1) u’(x) + (k21+k1a1+a2) u(x))ek x =0


xosil qilamiz.
k1= bo’lganda 2k1+a1 =0 va k1- xarakteristik tenglama karrali ildizi bo’lganidan

u’’ (x) ek x = 0 yoki u’’ (x) = 0.


Uni integrallab u(x)=Ax+ B ni xosil qilamiz.


Xususiy xolda, A=1 va B=0 deb olish mumkin: u(x)=x.
Demak, ikkinchi xususiy yechim y2 =xek x ko’rinishda buladi.
Demak, bu xolda umumiy yechim
y =( c1+ c2x)ek x

ko’rinishida bo’ladi.


3. Xarakteristik tenglamaning ildizlari k1 va k2 kompleks sonlar bo’lsin:


, ,
.
Xususiy yechimlarni
y1 =e x va y2 =e x
shaklida yozish mumkin.
Quyidagi natijadan foydalanamiz: agar xaqiqiy koeffitsentli bir jinsli chiziqli tenglamaning hususiy yechimi kompleks funksiyalardan iborat bo’lsa, u xolda uning haqiqiy va mavxum qismlari xam shu tenglamaning yechimi bo’ladi.
Demak, xususiy yechim
e x= e xcos( x)+ie xsin( x)
bo’lgani uchun e xcos( x) , e xsin( x) lar (4.3) tenglamaning yechimlari buladi.
Umumiy yechim esa

Download 160,17 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish