Yuqori darajali tub modulli taqqoslamalar. Lejandr simvoli va Yakobi simvoli


-ma’ruza. Indеkslar va ularning xossalari



Download 0,51 Mb.
bet4/8
Sana01.07.2022
Hajmi0,51 Mb.
#726683
1   2   3   4   5   6   7   8
Bog'liq
lejandr

13-ma’ruza. Indеkslar va ularning xossalari.

Ikkihadli taqqoslamalar. Indekslarning tadbiqi.

Reja:

1. Sonning Modul bo`yicha indeksi.

2. Indekslarning xossalari.



Har qanday r tub Modul bo`yicha boshlang`ich ildiz mavjudligi bilan tanishgan edik. Ma’lumki, g son r tub Modul bo`yicha boshlang`ach ildiz bo`lsa, u holda

g0,g1,g2,...,gp-2 (1)

sonlar qatori shu r Modul bo`yicha chegirmalarning keltirilgan sistemasini tashkil qiladi. (1) ketma-ketlikning hadlari r bilan o`zaro tub bo`lib, ular r Modul bo`yicha (r)= r-1 ta sinfning vakillaridan iboratdir. ^

Demak, (a; r)=1 bo`lsa, u holda (1) ketma-ketlikda r^ Modul bo`yicha a son bilan taqqoslanadigan yagona element topiladi, ya’ni

g=a(mod r) (2)

taqqoslama o`rinli bo`ladi.

Ta’rif. Agar g son r tub modul bo`yicha boshlang`ich ildiz bo`lib, (a; r)=1 bo`lganda g=a(mod r) taqqoslama to`g`ri bo`lsa, u holda  0 butun son a sonning r modul bo`yicha g asosga nisbatan indeksi deyiladi va u =indg a kabi belgilanadi.

Agar asos oldindan berilgan bo`lsa, a ning indeksi ind a orqali belgilanadi. Yuqoridagi tushunchalarga asosan, har bir (a; r)=1 shartni qanoatlantiruvchi a son, berilgan asos bo`yicha

0, 1, 2, ... r-2 (3)

sonlarning bittasi bilan aniqlanuvchi indeksga ega ekan. Asosning o`zgarishi bilan indeks ham o`zgaradi. Har bir (a; r)=1 qanoatlantiruvchi a soni, g boshlang`ich ildiz bo`yicha cheksiz ko`p indeksga ega bo`ladi. Bu indekslarning barchasi (modr) taqqoslamani qanoatlantiradi. Bu taqqoslama o`rinli bo`lishi uchun 1(mod r-1) taqqoslamaning bajarilishi zarur va etarlidir.

Indekslar quyidagi xossalarga ega:

10. a b(mod r) <=> inda =indb.

20. Agar (a;r)=1, (b;r)=1 bo`lsa, u holda ind(ab)=inda+ +indb(mod p-1) bo`ladi.

Bu taqqoslamalarni hadma-had ko`raytirib =ab(modr) taqqoslamaga ega bo`lamiz. Bundan r1+r2=ind(ab) kelib chiqadi. r1+r2=r bo`lib, u holda ind(ab)=inda+indb (mod p-1) bo`ladi. Bu esa r=r1+ +r2 (mod p -1) demakdir.


Download 0,51 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish