Заключение
641
720. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I. J., and
Fergus, R. (2014b). Intriguing properties of neural networks. ICLR, abs/1312.6199.
721. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna, Z. (2015). Rethinking the
Inception Architecture for Computer Vision. ArXiv e-prints.
722. Taigman, Y., Yang, M., Ranzato, M., and Wolf, L. (2014). DeepFace: Closing the gap
to human-level performance in face verification. In CVPR’2014.
723. Tandy, D. W. (1997). Works and Days: A Translation and Commentary for the Social
Sciences. University of California Press.
724. Tang, Y. and Eliasmith, C. (2010). Deep networks for robust visual recognition. In
Proceedings of the 27th International Conference on Machine Learning, June 21–
24, 2010, Haifa, Israel.
725. Tang, Y., Salakhutdinov, R., and Hinton, G. (2012). Deep mixtures of factor analy-
sers. arXiv preprint arXiv:1206.4635.
726. Taylor, G. and Hinton, G. (2009). Factored conditional restricted Boltzmann ma-
chines for modeling motion style. In L. Bottou and M. Littman, editors, Proceed-
ings of the Twenty-sixth International Conference on Machine Learning (ICML’09),
pages 1025–1032, Montreal, Quebec, Canada. ACM.
727. Taylor, G., Hinton, G. E., and Roweis, S. (2007). Modeling human motion using bi-
nary latent variables. In B. Sch
ö
lkopf, J. Platt, and T. Hoffman, editors, Advances in-
Neural Information Processing Systems 19 (NIPS’06), pages 1345–1352. MIT Press,
Cambridge, MA.
728. Teh, Y., Welling, M., Osindero, S., and Hinton, G. E. (2003). Energy-based models
for sparse overcomplete representations. Journal of Machine Learning Research, 4,
1235–1260.
729. Tenenbaum, J., de Silva, V., and Langford, J. C. (2000). A global geometric framework
for nonlinear dimensionality reduction. Science, 290(5500), 2319–2323.
730. Theis, L., van den Oord, A., and Bethge, M. (2015). A note on the evaluation of gen-
erative models. arXiv:1511.01844.
731. Thompson, J., Jain, A., LeCun, Y., and Bregler, C. (2014). Joint training of a convo-
lutional network and a graphical model for human pose estimation. In NIPS’2014.
732. Thrun, S. (1995). Learning to play the game of chess. In NIPS’1994.
733. Tibshirani, R. J. (1995). Regression shrinkage and selection via the lasso. Journal of
the
Royal Statistical Society B, 58, 267–288.
734. Tieleman, T. (2008). Training restricted Boltzmann machines using approximations
to the likelihood gradient. In W. W. Cohen, A. McCallum, and S. T. Roweis, editors,
Proceedings of the Twenty-fifth International Conference on Machine Learning
(ICML’08), pages 1064–1071. ACM.
735. Tieleman, T. and Hinton, G. (2009). Using fast weights to improve persistent contras-
tive divergence. In L. Bottou and M. Littman, editors, Proceedings of the Twenty-
sixth International Conference on Machine Learning (ICML’09), pages 1033–1040.
ACM.
736. Tipping, M. E. and Bishop, C. M. (1999). Probabilistic principal components analy-
sis. Journal of the Royal Statistical Society B, 61(3), 611–622.
737. Torralba, A., Fergus, R., and Weiss, Y. (2008). Small codes and large databases for
recognition. In Proceedings of the Computer Vision and Pattern Recognition Con-
ference (CVPR’08), pages 1–8.