Quantum organic chemistry
ĶOĶ 605
Asoc. prof. Māris Utināns
Course description: 10Credit units; 32 hours lectures, 32 hours practice
Control forms: Exam
Course content:
-
Introduction in quantum chemistry.
-
Models of molecules. Geometry of molecules, bonds lengths and angles between bonds. Physical methods for geometry determination.
-
Calculation methods of chemical compounds. Molecular mechanic and quantum chemistry. Possibilities to solve the Scrodinger’s equation. Born - Openheymer approach.
-
Molecular mechanics.
-
Born-Openheymer surfaces. Model of molecular mechanics. Functions of potential energy. Force fields. Deformations of bonds, unvalent interactions, torsial energies. Van-Der-Vals potentials. Parametrization .
-
Force fields for conjugated systems. Minimization of energies. Change of conformations, molecular dynamics.
-
Quantum mechanics.
-
Wave function for system. Born - Openheymer approach. Energy quantization.Schrodinger’s equation. Operators. Wave function and its physical interpretation. Properties of wave functions. Orbitals, their types and energies. Atomfunctions and atomic orbitals. Formation of molecular orbitals.Wave functions for two center systems. Functions and coefficients. Variation method. Multicenter systems. MO methods. Ab initio methods. Base functions. Slater’s type functions, Gaus type functions. Ruthan equation.
-
Semiempirical methods. LKAO MO. SCF methods. MNDO, MNDOC, AM1, PM3 versions. INDO, MINDO, MINDO/3 versions. CNDO, CNDO/2, CNDO/S, ZINDO/S versions.
-
HMO. Calculations of conjugated systems using the Hyckel’s method. MO for ethylene, butadiene, arenes. Aromaticity. Parametrization of HMO. Problems of heteroatoms. Extended Hyckel’s method. Pariser’s-Parr’s-Pople’s (PPP)methods. Electronegativities. Overlap integrals.
-
Theories of chemical bonds. Bond’s energies, bond’s orders, bond’s lengths, conjugation and hyperconjugation. Ionization potentials. Charge density distribution in molecule. Localized and delocalized MO. Frontal MO. Use of FMO theory.
-
Potential energy surfaces. Local and global minimums, conformations change, activation energies, direction of reactions. Perturbation theory.
-
Photochemical reactions. Stability of excited states. Potential energy surfaces for excited states. Photoinduced electron transfer.
Literature:
-
Cnhtqndbpth ". Ntjhbz vjktrekzhys[ jh,bn lkz [bvbrjd-jhufybrjd% Gth. c fyuk.#Gjl htl. V.T. Lznrbyjq. V.%Vbh 1965> 435 c.
-
"kkbyl;th Y.K. Vjktrekzhyfz vt[fybrf.-V.% Vbh 1986
-
Rkfhr N. Rjvg/nthyfz [bvbz% Gth. c fyuk.#Gjl htl. D.C. Vfcnh/rjdf b lh. V.% Vbh 1990> 384 c.
-
L/fh V.> Ljuthnb H. Ntjhbz djpveotybq vjktrekzhys[ jh,bnfktq d jhufybxtcrjq [bvbb% Gth. c fyuk.#Gjl htl. K.F. Zyjdcrjq. V.%Vbh> 1977.
Organic Materials for Electronics and Optics ĶOĶ 606
Professor Ojārs Neilands
Course description: 10Credit units; 32 hours lectures, 32 hours practice
Control forms: Exam
Course content:
-
Basic principles of feasibility to use organic compounds in electronics and optics. Physical properties of organic compounds usable for design of active elements for devices.
-
Transformation of organic compounds into materials for electronics and optics.
-
Organic semiconductors and their physical properties. Organic compounds and assemblies of organic compounds characteristic of semiconducting properties.
-
Organic metals and superconductors. Organic compounds and assemblies of organic or inorganic compounds capable to form metallic state in solid substance.
-
Organic compounds characteristic of non linear optical effects. Constitution factors which determine large hyperpolarizability of molecules. Photorefraction.
Literature:
-
Siliņš E. Organiskie pusvadītāji. - Rīga: Liesma, 1968. - 80 lpp.
-
Eiduss J., Siliņš E. Fotonika. - Rīga: Liesma, 1974. - 128 lpp.
-
Симон Ж., Андре Ж.-Ж. Молекулярные полупроводники. - Москва: Мир, 1988. - 342 c.
Additional literature
-
Organic Conductors: Fundamentals and applications / ed. by J.-P. Farges. - New York: Marcel Dekker Inc.,1994. - 854 p.
-
Electrical and Related Properties of Organic Solids / ed. by R.W.Munn, A.Minewicz, B.Kuchta. - Dordrecht: Kluwer Academic Publishers, 1997. - 450 p.
-
6. Miller J.S., Epstein A.J. Organic and Organometallic Molecular Magnetic Materials—Designer Magnets //Angew. Chem. Int. Ed. Engl. -1994. - Vol.33. - P. 385-415.
-
Optical Organic and Semiconductor Inorganic Materials / ed. by E.Silinsh, A.Medvid, A.Lusis, A.O.Ozols // SPIE Proceedings. - Vol.2968. - 1997. - 324 p.
-
Clays K., Persoons A. Hyper-Rayleigh Scattering in Solution //Rev. Sci. Instrum. - 1992. - Vol.63. - Nr.6. - P. 3285-3289.
-
Marder S.R., et al. Large First Hyperpolarizabilities in Push-Pull Polyenes by Tuning of the Bond Length Alternation and Aromaticity // Science. -1 994. - Vol.263. -P. 511-514.
-
10.Garito A., Rui Fang Shi, Wu M. Nonlinear Optics of Organic and Polymer Materials // Physics Today. - 1994. - May. - P. 51-57.
-
11. Luping Yu, Wai Kin Chan, Zhonghua Peng, Ali Gharavi. Multifunctional Polymers Exibiting Photorefractive Effects // Acc. Chem. Res. - 1996. - Vol.29. - P.13-21.
Intermolecular and Intramolecular Electron Transfer
ĶOĶ 607
Professor Ojārs Neilands
Course description: 10Credit units; 32 hours lectures, 32 hours practice
Control forms: Exam
Course content:
-
The conception of charge transfer and single electron tranfer.
-
Characterisation of electron donating properties. Determination of ionisation energy.
-
Constitution of organic molecules and ions, and values of ionisation energy.
-
Characterisation of electron accepting properties.Determination of electron affinity.
-
Constitution of organic molecules and ions, and values of electron affinity.
-
Formation of charge transfer complexes and their classification. Formation constants of complexes and intensity of charge transfer band in electron absorption spectra. Charge transfer degree in complexes. The dependence of charge transfer energy from ionisation energy and electron affinity of components.
-
Intramolecular charge transfer and photoinduced electron transfer. The types of organic molecules characteristic of intramolecular charge transfer.
-
The role of charge transfer complexes and single electron transfer in chemical reactions.
-
The probably use of charge transfer complexes and ion-radical salts as materials in electronics and optoelectronics.
Literature:
-
Marcus R.A. Electron transfer Reactions in Chemistry: Theory and Experimental (Nobel Lecture)// Angew. Chem. Int. Ed. Engl.- 1993.- Vol. 32.- № 8.-P.1111-1122.
-
Кампар В.Э., Нейланд О.Я. Сродство к электрону органических электронакцепторов //Успехи химии.-1977.-Т.46.-№ 6.-С.945-966.
-
Кампар В.Э. Комплесы с переносом заряда нейтральных доноров с акцепторами органическими катионами //Успехи химии.-1982.-Т.51.- № 2.-С.185-206.
-
Кампар В.Э., Нейланд О.Я. Степень переноса заряда в донорно - акцепторных системах π,π-типа // Успехи химии.-1986.-Т.55.-№ 4.-С.637-651.
-
Кампар В.Э. Межмолекулярное и внутримолекулярное электроно-донорно-акцепторное взаимодействие в π-электронных системах // Изв.АН Латв.ССР, Сер.хим.-1984.-№ 5.-С. 585-601.
-
Нейланд О.Я. Проблемы поиска сильных органических электронодоноров и электроноакцепторов и их физико-химические свойства // Изв.АН Латв.ССР, Сер.
-
физ.-мат. наук.-1981.-№ 6.-С. 63-77.
-
Kebarle P., Chowdhury S. Electron Affinities and Electron Transfer Reactions // Chem.Rev.-1987.-Vol.83.-№ 3.-P.513-534.
Do'stlaringiz bilan baham: |