C++ Neural Networks and Fuzzy Logic: Preface


Eliminate Correlated Inputs Where Possible



Download 1,14 Mb.
Pdf ko'rish
bet290/443
Sana29.12.2021
Hajmi1,14 Mb.
#77367
1   ...   286   287   288   289   290   291   292   293   ...   443
Bog'liq
C neural networks and fuzzy logic

Eliminate Correlated Inputs Where Possible

You have seen that getting to the minimum number of inputs for a given problem is important in terms of

minimizing DOF and simplifying your model. Another way to reduce dimensionality is to look for correlated

inputs and to carefully eliminate redundancy. For example, you may find that the Swiss franc and German

mark are highly correlated over a certain time period of interest. You may wish to eliminate one of these

inputs to reduce dimensionality. You have to be careful in this process though. You may find that a seemingly

redundant piece of information is actually very important. Mark Jurik, of Jurik Consulting, in his paper on

data preprocessing, suggests that one of the best ways to determine if an input is really needed is to construct

neural network models with and without the input and choose the model with the best error on training and

test data. Although very iterative, you can try eliminating as many inputs as possible this way and be assured

that you haven’t eliminated a variable that really made a difference.

Another approach is sensitivity analysis, where you vary one input a little, while holding all others constant

and note the effect on the output. If the effect is small you eliminate that input. This approach is flawed

C++ Neural Networks and Fuzzy Logic:Preface

Eliminate Correlated Inputs Where Possible

301



because in the real world, all the inputs are not constant. Jurik’s approach is more time consuming but will

lead to a better model.

The process of decorrelation, or eliminating correlated inputs, can also utilize a linear algebra technique

called principal component analysis. The result of principal component analysis is a minimum set of variables

that contain the maximum information. For further information on principal component analysis, you should

consult a statistics reference or research two methods of principal component analysis: the Karhunen−Loev



transform and the Hotelling transform.


Download 1,14 Mb.

Do'stlaringiz bilan baham:
1   ...   286   287   288   289   290   291   292   293   ...   443




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish