C++ Neural Networks and Fuzzy Logic: Preface


Transform the Data If Appropriate



Download 1,14 Mb.
Pdf ko'rish
bet287/443
Sana29.12.2021
Hajmi1,14 Mb.
#77367
1   ...   283   284   285   286   287   288   289   290   ...   443
Bog'liq
C neural networks and fuzzy logic

Transform the Data If Appropriate

For time series data, you may consider using a Fourier transform to move to the frequency−phase plane. This

will uncover periodic cyclic information if it exists. The Fourier transform will decompose the input discrete

data series into a series of frequency spikes that measure the relevance of each frequency component. If the

stock market indeed follows the so−called January effect, where prices typically make a run up, then you

would expect a strong yearly component in the frequency spectrum. Mark Jurik suggests sampling data with

intervals that catch different cycle periods, in his paper on neural network data preparation (see references ).

C++ Neural Networks and Fuzzy Logic:Preface

Pre processing the Data for the Network

299



You can use other signal processing techniques such as filtering. Besides the frequency domain, you can also

consider moving to other spaces, such as with using the wavelet transform. You may also analyze the chaotic

component of the data with chaos measures. It’s beyond the scope of this book to discuss these techniques.

(Refer to the Resources section of this chapter for more information.) If you are developing short−term

trading neural network systems, these techniques may play a significant role in your preprocessing effort. All

of these techniques will provide new ways of looking at your data, for possible features to detect in other

domains.

Scale Your Data

Neurons like to see data in a particular input range to be most effective. If you present data like the S&P 500

that varies from 200 to 550 (as the S&P 500 has over the years) will not be useful, since the middle layer of

neurons have a Sigmoid Activation function that squashes large inputs to either 0 or +1. In other words, you

should choose data that fit a range that does not saturate, or overwhelm the network neurons. Choosing inputs

from –1 to 1 or 0 to 1 is a good idea. By the same token, you should normalize the expected values for the

outputs to the 0 to 1 sigmoidal range.

It is important to pay attention to the number of input values in the data set that are close to zero. Since the

weight change law is proportional to the input value, then a close to zero input will mean that that weight will

not participate in learning! To avoid such situations, you can add a constant bias to your data to move the data

closer to 0.5, where the neurons respond very well.


Download 1,14 Mb.

Do'stlaringiz bilan baham:
1   ...   283   284   285   286   287   288   289   290   ...   443




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish