C++ Neural Networks and Fuzzy Logic: Preface



Download 1,14 Mb.
Pdf ko'rish
bet182/443
Sana29.12.2021
Hajmi1,14 Mb.
#77367
1   ...   178   179   180   181   182   183   184   185   ...   443
Bog'liq
C neural networks and fuzzy logic

Weights and Training

BAM does not modify weights during its operation, and as mentioned in Chapter 6, like the Hopfield network,

uses one−shot training. The adaptive variety of BAM, called the Adaptive Bidirectional Associative Memory,

(ABAM) undergoes supervised iterative training. BAM needs some exemplar pairs of vectors. The pairs used

as exemplars are those that require heteroassociation. The weight matrix, there are two, but one is just the

transpose of the other as already mentioned, is constructed in terms of the exemplar vector pairs.

The use of exemplar vectors is a one−shot learning—to determine what the weights should be. Once weights

are so determined, and an input vector is presented, a potentially associated vector is output. It is taken as

input in the opposite direction, and its potentially associated vector is obtained back at the input layer. If the

last vector found is the same as what is originally input, then there is resonance. Suppose the vector B is

obtained at one end, as a result of C being input at the other end. If B in turn is input during the next cycle of

operation at the end where it was obtained, and produces C at the opposite end, then you have a pair of

heteroassociated vectors. This is what is basically happening in a BAM neural network.

NOTE:  The BAM and Hopfield memories are closely related. You can think of the

Hopfield memory as a special case of the BAM.

What follow are the equations for the determination of the weight matrix, when the k pairs of exemplar

vectors are denoted by ( X




Download 1,14 Mb.

Do'stlaringiz bilan baham:
1   ...   178   179   180   181   182   183   184   185   ...   443




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish