Alisher Navoiy nomidagi Toshkent
davlat o‘zbek tili va adabiyoti
universiteti
“O‘ZBEK MILLIY VA TA’LIMIY
KORPUSLARINI YARATISHNING NAZARIY
HAMDA AMALIY MASALALARI”
Xalqaro ilmiy-amaliy konferensiya
Vol. 1
№. 01 (2021)
97
ibora, qo‘shma fe’l, ko‘makchi fe’lli so‘z qo‘shilmasi, so‘z birikmalarini teglashdagi
holatlar va boshqalar.
Matndagi so‘zni teglash jarayonida bu holatlarda duch kelinganda, teglashni bajarayotgan
tilshunosning bilimli va tajribali bo‘lishi muhim va bu matnli korpus sifatini belgilovchi omillardan
biridir.
Ushbu ishda so‘zlarni turkumlash algoritm va dasturiy vositalar, so‘z turkumlari teglangan
korpuslarni ishlab chiqish bo‘yicha tadqiqotlar tahlil qilindi. O‘zbek tili uchun so‘z turkumlari teglangan
korpusni tayyorlash maqsadida matnli ma’lumotlar to‘plandi va ular UZPOS va UPOS yondashuvlariga
ko‘ra teglab chiqildi. Ishlab chiqilgan matnli korpusni o‘zbek tilida yozilgan matnlardagi so‘zlarni
turkumlash algoritmlarini ishlab chiqishda va ularni samarali ishlashini baholashda foydalanish mumkin.
ADABIYOTLAR:
1.
Atwell E. Development of tagsets for part-of-speech tagging. An international handbook. Corpus
Linguistics: Mouton de Gruyter. 2008.
2.
Simpson H., Maeda K. and Cieri C. Basic language resources for diverse asian languages: A
streamlined approach for resource creation. Proceedings of the 7th Workshop on Asian Language
Resources (ALR7). 2009. pp. 55-62.
3.
Matlatipov S., Tukeyev U. and Aripov M. Towards the Uzbek Language Endings as a Language
Resource. International Conference on Computational Collective Intelligence. Springer, Cham. 2020.
pp. 729-740.
4.
Tursunov M., Karshiev A. and Karimov S. Development of a Modern Corpus of Computational
Linguistics. 2020 International Conference on Information Science and Communications
Technologies (ICISCT). IEEE. 2020. pp. 1-4.
5.
Axmedova X., Yusupova D. So‘z turkumlarini teglash usullari: muammo va yechimlar. “Kompyuter
lingvistikasi: muammolar, yechim, istiqbollar” Respublika I ilmiy-texnikaviy konferensiya
materiallari. Vol. 1 №. 01. 2021. 90-94 bb.
6.
Matlatipov G. and Vetulani Z. Representation of uzbek morphology in prolog. Aspects of Natural
Language Processing. Springer, Berlin, Heidelberg. 2009. pp. 83-110.
7.
Mengliev B., Shahabitdinova Sh., Khamroeva Sh., Gulyamova Sh., Botirova A. The morphological
analysis and synthesis of word forms in the linguistic analyzer // Linguistica Antverpiensia, 2021,
2021(1), стр. 703-712.
8.
Хамроева Ш. Муаллифлик корпусининг муштарак ва ўзига хос жиҳатлари // Сўз санъати
халқаро журнали. – №2 (2020) – Б. 80-87. DOI http://dx.doi.org/10.26739/2181-9297-2020-2
9.
Abdurakhmonova N.Z., A two-level morphological analysis of the uzbek corpus. Иностранная
филология. Социальная и национальная вариативность языка и литературы. 2019. pp. 425-430.
10.
Abdurakhmonova N. Dependency Parsing based on Uzbek Corpus. Proceedings of the International
Conference on Language Technologies for All (LT4All). 2019.
11.
Bakaev I. and Bakaeva R. Creation of a morphological analyzer based on finite-state techniques for
the Uzbek language. Journal of Physics: Conference Series Vol. 1791, No. 1, IOP Publishing. 2021.
p. 012068.
12.
Sharipov M., Salaev U., Matlatipov G. Oʻzbek tili fe’l soʻz turkumi uchun chekli avtomatlar asosida
stemming algoritmini yaratish. “Kompyuter lingvistikasi: muammolar, yechim, istiqbollar”
Respublika I ilmiy-texnikaviy konferensiya materiallari. Vol. 1 №. 01. 2021. 56-62 bb.
13.
Petrov S., Das D. and McDonald R., A Universal Part-of-Speech Tagset. Proceedings of the Eighth
International Conference on Language Resources and Evaluation (LREC’12). 2012. pp. 2089-2096.
14.
Rabbimov I., Kobilov S. Multi-Class Text Classification of Uzbek News Articles using Machine
Learning. Journal of Physics: Conference Series 2020. Vol. 1546, p. 012097.
Do'stlaringiz bilan baham: |