Значения коэффициента нелинейных искажений должны быть не более 1 %.
Проверку относительного коэффициента поперечных колебаний вибростола (по ускорению) производить на частотах 45; 64; 79,6 Гц при амплитудном значении виброускорения 10 м/с 2.
Закрепить на вибростоле восьмигранник, к торцу которого прикрепить вибродатчик, выход которого через согласующий усилитель подключить к цифровому вольтметру. Измерить напряжение на выходе согласующего усилителя (Uв) при колебаниях в основном направлении на частотах 45; 64; 79,6 Гц при амплитуде виброускорения 10 м/с 2, задаваемом по показаниям индикатора вибростенда. Последовательно закрепляя вибродатчик на боковых гранях восьмигранника, поочередно произвести измерения напряжения на выходе согласующего усилителя (Ui). При этом значение виброускорения в основном направлении контролировать перед каждым измерением и поддерживать постоянным. Вибродатчик, закрепленный на боковой плоскости, вырабатывает напряжение, пропорциональное поперечным колебаниям вибростенда и собственной основной и поперечной чувствительности.
Вычислить относительные коэффициенты поперечных колебаний в различных направлениях Кiпп в процентах можно по формуле (17.50)
Кinn( )
U ( ) U ( 180) 100 , (17.50)
2Uв
Значения относительного коэффициента поперечных колебаний вибростола должны быть не более 2 % на частоте 45 Гц и не более 5 % - на остальных частотах. Проверку сопротивления изоляции проводят с помощью мегаомметра путём подключения его между закороченными контактами питания вибростенда и корпусом. Сопротивление изоляции должно быть не менее 20 МОм. Проверку нестабильности воспроизведенных параметров вибрации проводить по методике через 4 мин после включения вибростенда, через 30 мин. при максимальной нагрузке и раздельно на частотах 45; 64; 79,6 Гц. Значение нестабильности параметров вибрации не должны превышать 0,5 %.
Определение основной погрешности воспроизведения частоты вибрации проводить на частотах 45; 64 и 79,6 Гц с помощью электронно-счетного частотомера, подключенного к разъему “Вых. лин.” или “Вых. синхр”.
На вибростенде установить частоту вибрации 45 Гц, при которой записать в таблицу частоты колебаний по показаниям частотомера.
Вычисленные значения округляются с точностью до 0,01 Гц. Повторить операции по методике на частотах вибрации 64 и 79,6 Гц.
Значение основной погрешности воспроизведения частоты вибрации не должно превышать ± 0,2 Гц.
Оформление результатов проверки. Положительные результаты поверки должны быть оформлены свидетельством о поверке, а также записью в паспорте (формуляре) результатов и даты поверки. Допускается не оформлять свидетельство о поверке, а соответствующая запись может быть сделана в формуляре стенда и заверена подписью поверителя, оттиском его клейма и голографической маркой Госстандарта.
Вибростенд, прошедший поверку с отрицательными результатами, к эксплуатации не допускается, и на него оформляется извещение о непригодности.
Системы управления вибростендом К-5201, К-5201/П. Виброиспытательные системы по технологии виртуальных приборов. Существует обширный класс задач, связанных с использованием вибраторов (или вибростендов), где обязательно используются вибрационные измерения:
виброиспытания продукции;
прозвучивание конструкций;
поверка (калибровка) средств виброизмерений;
определение инерционно-жесткостных характеристик материалов, образцов, изделий;
виброукладка и т.д.
Реализация подобных задач с использованием технологии «виртуальных приборов» является на сегодняшний день оптимальной формой решения, которая позволяет:
- минимизировать количество используемой аппаратуры. Из дискретных приборов остаются только усилитель мощности (как правило, соответствующий усилитель всегда приобретается вместе с вибратором или уже входит в комплект поставки вибратора) и согласующие усилители для акселерометров. Функции всех остальных приборов (генерация сигналов возбуждения, обработка и анализ вибросигналов, ведение Баз Данных, формирование отчетной документации и т.д.) принимает на себя ПК с соответствующими встроенными устройствами ввода/вывода и программным обеспечением;
автоматизировать весь процесс решения задачи, увязав единым алгоритмом процесс генерации сигналов возбуждения и анализа соответствующих им вибрационных откликов;
избавиться от субъективизма и ошибок операторов;
сформировать автоматизированную Базу Данных испытаний;
обеспечить формирование и выпуск оперативной и отчетной документации по результатам испытаний;
удобный пользовательский интерфейс, наглядное представление хода и результатов испытаний;
увеличение количества задач, решаемых в едином взаимосвязанном алгоритме функционирования системы. Например, виброиспытания продукции. Одной из наиболее широко распространенных задач здесь является задача виброиспытаний различных приборов на тряску. При этом закрепленный на платформе вибратора прибор включен и выполняет некую отдельную тестовую программу, контролирующую его работоспособность в процессе тряски. В рамках технологии «виртуальных приборов» задача контроля работоспособности испытуемого прибора в процессе тряски также в большинстве случаев может быть увязана с общим алгоритмом функционирования системы. Такая возможность обусловлена тем, что используемые устройства ввода/выводы (платы АЦП/ЦАП) имеют не менее 8 или 16 аналоговых входов и не менее 8 разрядов цифровых входов/выходов, т.е. практически всегда существует возможность как аналоговые, так и цифровые сигналы испытуемого прибора завести на компьютер и их анализ увязать с общим алгоритмом работы;
универсальность схемного решения. Показанный на рисунке вверху пример схемы соединений элементов системы для виброиспытаний остается неизменным практически для любых задач, связанных и использованием вибраторов, которые перечислены в начале раздела. Например, при поверке акселерометра со схемы просто исчезнет объект испытаний, а оба датчика (при этом один будет эталонным, второй поверяемым) будут установлены на платформу вибратора. Таким образом, смена решаемой задачи осуществляется просто сменой рабочей программы ПК;
гибкость системы в адаптации к конкретным типам используемых в системе дискретных приборов;
при всех перечисленных достоинствах любая из названных систем может быть реализована при самых минимальных затратах, не превышающих, как правило, $4000-5000. Большинство предприятий, занимающихся реализацией перечисленных задач, уже имеют соответствующие вибраторы, усилители мощности, вибрационные каналы (о компьютерах мы даже и не говорим, где их сейчас нет, и поэтому для них создание современной, автоматизированной системы связано только с приобретением соответствующей платы АЦП/ЦАП и рабочего программного обеспечения.
Виброиспытания и контроль.
Рисунок 17.65 - Название программы: Вибротест. К-5201
Краткое описание.
Основные характеристики. Генерация синусоидального сигнала в диапазоне частот от 5 Гц до 4 000 Гц. Генерация СШВ (белый шум) в заданном оператором частотном диапазоне (от 5 Гц до 4 000 Гц). Автоматическое поддерживание заданных уровней вибрации (компрессия) с заданной точностью. Задание и измерение следующих типов сигнала: виброускорение, виброскорость, вибросмещение. Задание и измерение следующих параметров сигнала: СКЗ (среднеквадратичное значение), Амплитуда, Плотность мощности (только для сигнала виброускорения в режиме генерации белого шума);- усреднение сигнала по показательному закону с выбираемой постоянной времени от 1 с до 10 с. Спектральный анализ в диапазоне 3.125 - 5 000 Гц с заданием количества спектров для усреднения;- вывод на дисплей сигналов во временной и частотной области. Сохранение данных измерений в файле с заданной периодичностью и длительностью. Четыре измерительных канала (в данной версии). Оодин канал генератора.
Рисунок 17.66 – Система управления вибростендом
Рисунок 17.67 - Система управления вибростендом. Название программы: Вибропрочность
Краткое описание:
Прибор "Вибропрочность" предназначен для управления вибростендом и измерения заданных вибрационных параметров в автоматическом и ручном режимах по программам испытаний на виброустойчивость и вибропрочность.
Основные характеристики. Генерация синусоидального сигнала в диапазоне частот от 5 Гц до 4 000 Гц. Автоматическое поддерживание заданных уровней вибрации (компрессия) с заданной точностью. Работа в автоматическом режиме по программам испытаний на вибропрочность и виброустойчивость. Создание и редактирование программ испытаний, задаются следующие параметры: частотный поддиапазон, тип сигнала вибрации (виброускорение, виброскорость, вибросмещение), измеряемый параметр вибрации (СКЗ, Амплитуда), поддерживаемый уровень вибрации, количество циклов качания. Количество поддиапазонов может быть любым, скорость изменения частоты примерно 1 октава в минуту. Задание и измерение следующих типов сигнала: виброускорение, виброскорость, вибросмещение. Задание и измерение следующих параметров сигнала: СКЗ (среднеквадратичное значение), Амплитуда. Усреднение сигнала по показательному закону с выбираемой постоянной времени от 1 с до 10 с. Спектральный анализ с заданием количества спектров для усреднения. Вывод на дисплей сигналов во временной и частотной области. Сохранение данных измерений в файле с заданной периодичностью. Четыре измерительных канала (в данной версии). Один канал генератора.
Рисунок 17.68 - Прибор «Вибротест СШВ»
Do'stlaringiz bilan baham: |