В. А. Никитин с. В. Бойко



Download 9,5 Mb.
bet138/181
Sana20.06.2022
Hajmi9,5 Mb.
#682690
1   ...   134   135   136   137   138   139   140   141   ...   181
Bog'liq
metod566

Рд = αρV2/2, (16.39)

где ρ - плотность среды;


V- скорость среды;
α - коэффициент, зависящий от формы преграды на пути жидкости.
Измерив значение избыточного давления, можно определить значение скорости среды в данном сечении. Если известно поле скоростей по всему сечению канала, то может быть определен расход.
Различают преобразователи, использующие трубки скоростного напора, и преобразователи гидродинамического сопротивления тела.
На рисунке 16.35 изображен преобразователь с трубками скоростного напора (трубкой Пито). В поток вводятся две трубки, подключенные к преобразователю перепада давлений. Плоскости входных отверстий трубок расположены перпендикулярно и параллельно направлению потока. В первой трубке поток тормозится, поэтому полное давление Р1 в ней превышает давление среды Р на величину ∆Р. Давление во второй трубке равно давлению Р в трубопроводе. Разность давлений равна ∆Р и преобразуется в напряжение uвых дифференциальным манометрическим преобразователем. Недостатками описанного преобразователя являются квадратичный характер функции преобразования и зависимость выходной величины от плотности среды.
В преобразователях гидродинамического сопротивления в поток жидкости вводится тело (заслонка) определенной формы. При этом сила гидродинамического давления, действующая на заслонку, пропорциональна квадрату скорости потока и зависит от эффективной площади заслонки. Выходной величиной таких преобразователей обычно является угол поворота заслонки, преобразуемый затем в электрический сигнал.

Рисунок 16.35 - Преобразователь скоростного напора


Рисунок 16.36 - Турбинный преобразователь расхода


Турбинные преобразователи расхода. Действие турбинных преобразователей расхода основано на преобразовании частоты вращения крыльчатки, помещенной в поток. При турбулентном движении среды частота вращения связана с объемным расходом линейной зависимостью. Применяют крыльчатки различной формы, но наибольшее распространение получили спиральные крыльчатки, как наиболее простые по конструкции и обеспечивающие высокую точность (0,1-0,5 %). Преобразователи со спиральными крыльчатками изготовляются на расходы жидкостей от 10-2 до 7ּ103 м3/ч, для газов до 20ּ103 м3/ч. На рисунке 16.36 иллюстрируется работа турбинного преобразователя расхода с индукционным преобразователем частоты вращения крыльчатки.


Поток жидкости вращает крыльчатку, в корпусе которой находится постоянный магнит. Если трубопровод выполнен из немагнитного материала, то при вращении крыльчатки происходит модуляция магнитного потока в наружном магнитопроводе. В результате с выходной обмотки снимается напряжение, частота которого пропорциональна измеряемому объемному расходу.
Инерционность таких преобразователей невелика, постоянная времени зависит от типа и конструкции вращающегося элемента и составляет 1-50 мс.
Турбинные преобразователи применяются для измерений не только объемного, но и массового расхода. В последнем случае преобразователи имеют более сложную конструкцию. При измерении массового расхода обычно осуществляют искусственное закручивание контролируемого потока с помощью принудительно вращаемой крыльчатки. При этом подводимая мощность и вращающий момент пропорциональны массовому расходу продукта.
Другой разновидностью турбинных преобразователей массового расхода являются преобразователи, в которых предварительно закрученный поток воздействует на другую крыльчатку, создавая крутящий момент, пропорциональный массовому расходу.
Индукционные преобразователи расхода. Для измерения расхода электропроводящей жидкости широко используются индукционные преобразователи. Их действие основано на том, что если проводящая жидкость движется в постоянном или переменном магнитном поле, направление которого не совпадает с направлением движения жидкости, то в ней индуцируется ЭДС, пропорциональная скорости ее движения. Эта ЭДС является причиной возникновения токов в жидкости и соответствующего реактивного магнитного поля, которые также пропорциональны скорости движения жидкости, а следовательно, расходу.
Для бесконтактного измерения расхода могут применяться индукционные преобразователи, реагирующие на значение реактивного магнитного поля вихревых токов в жидкости, но наибольшее распространение на практике благодаря простоте конструкций и высокой чувствительности получили контактные индукционные расходомеры, в которых измеряется разность потенциалов между помещенными в жидкость электродами. Принцип действия таких расходомеров иллюстрируется на рисунке 16.37.
Контролируемая электропроводящая жидкость течет в трубопроводе 2 из изоляционного материала, помещенном между полюсами 1 магнитопровода, создающего постоянное или переменное магнитное поле. В трубопроводе раз- мещены электроды 3, с которых снимается разность потенциалов, пропорциональная расходу. Чаще всего используют переменное магнитное поле, создаваемое электромагнитом, так как при этом на результат измерения не влияет поляризация электродов. Трубопровод может иметь не только прямоугольное, но и круглое сечение.
Индукционные расходомеры имеют ряд существенных достоинств. Они практически безынерционны и могут применяться для измерения переменного (например, пульсирующего) расхода. Их выходная величина слабо зависит от таких параметров жидкости, как давление, плотность, вязкость, температура. Создаваемое ими дополнительное сопротивление потоку жидкости также незначительно. Погрешность индукционных преобразователей лежит в пределах 0,5-1,5 %; диаметр трубопроводов, в которых может измеряться расход, изменяется от единиц миллиметров до 3 м.
Основным недостатком индукционных расходомеров является практическая невозможность их использования для измерения расхода диэлектрических жидкостей. Удельное сопротивление контролируемой жидкости не должно превышать 105 Омּм.

Рисунок 16.37 - Индукционный преобразователь расхода


Ультразвуковые преобразователи расхода. Действие ультразвуковых преобразователей расхода основано на том, что скорость распространения звуковой волны в движущейся среде равна геометрической сумме скорости звука С в неподвижной среде и скорости среды V. Если измерить суммарную скорость, то при известном значении С и известном угле между векторами можно определить скорость потока V, а следовательно, и расход жидкости.


Измерение скорости звука в движущейся среде обычно осуществляется путем определения интервала времени 1, в течение которого звуковая волна проходит известное расстояние L. Наибольшее распространение на практике получили время - импульсный и фазовый методы измерений.
При время - импульсном методе измерения сигнал в виде ультразвукового импульса излучается излучателем Изл и принимается приемником Прм (рисунок 16.38). Интервал времени между моментами приема и излучения сигнала находится по формуле (16.40)


t = L/(С+V cos θ) L (1-V cos θ /C)/C , (16.40)

где θ - угол между векторами С и V.
Отсюда при известных значениях L, θ и С находят скорость V.
Применяют дифференциальные схемы с двумя каналами прохождения ультразвука. Движение потока жидкости увеличивает скорость ультразвука в одном канале и соответственно уменьшает в другом. Разность времени прохождения в двух каналах находят по формуле (16.41)

t=2LVcos θ /C2, (16.41)


При фазовом методе измерения излучаются непрерывные гармонические колебания и измеряется разность фаз сигналов. В одноканальной структуре выходной величиной является разность фаз принятого и излученного сигналов



  t
 L /(C V cos )  L1  V cos / C / C , (16.42)


Рисунок 16.38 - Ультразвуковые преобразователи расхода


В двухканальной структуре (рисунок 16.38) оба излучателя питаются от одного генератора, а выходной величиной является разность фаз сигналов на выходах приемников, которая вычисляется по формуле (16.43)





  t
 2LV cos / C 2
(16.43)

Трудность практической реализации описанных методов заключается в том, что скорость реальных потоков гораздо меньше скорости звука (С~1500 м/с). В связи с этим измеряемые интервалы времени или фазовые сдвиги оказываются весьма малыми. Для повышения точности ультразвуковых преобразователей расхода в них используют весьма высокие частоты сигналов (единицы мегагерц), а также более сложные структуры преобразователей, позволяющие, в частности, исключить влияние нестабильности скорости С на результат измерения расхода.


Преобразователи расхода других типов. Кроме рассмотренных выше, находят применение и другие типы преобразователей расхода. Так, объемный расход среды может быть определен путем измерения скорости движения какой-либо метки, переносимой средой. В качестве метки используют, например, порцию нагретой жидкости или ионизированного газа. С помощью соответствующих чувствительных элементов определяют время прохождения меткой известного расстояния. Иногда осуществляют непрерывную модуляцию какого-либо параметра среды (например, степени ионизации), тогда выходной величиной является сдвиг фаз между принятым и возбуждающим сигналами.
Для измерения скоростей газовых потоков используются преобразователи на основе терморезисторов - термоанемометры. Их работа основана на том, что установившаяся температура нагреваемого током терморезистора, помещенного в газовый поток, зависит от скорости этого потока. Выходной величиной преобразователя является сопротивление терморезистора. Для уменьшения температурной погрешности в мостовую измерительную цепь, кроме основного, включают дополнительный терморезистор, аналогичный основному, но защищенный от действия потока газа.
Для измерения расхода веществ с большим ядерным моментом
(например, жидкостей, содержащих водород и фтор) применяют

преобразователи расхода с использованием явления ядерного магнитного резонанса.
Для измерения расхода газов, находят применение ионизационные преобразователи, в которых движущийся газ ионизируется с помощью тлеющего разряда или радиоактивных изотопов. При этом ионный ток между введенными в поток электродами зависит от скорости движения газа.


  1. Download 9,5 Mb.

    Do'stlaringiz bilan baham:
1   ...   134   135   136   137   138   139   140   141   ...   181




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish