В. А. Никитин с. В. Бойко



Download 9,5 Mb.
bet105/181
Sana20.06.2022
Hajmi9,5 Mb.
#682690
1   ...   101   102   103   104   105   106   107   108   ...   181
Bog'liq
metod566

Термопреобразователи сопротивления

Измерение температуры термопреобразователями сопротивления основано на свойстве металлов и полупроводников изменять свое электрическое сопротивление с изменением температуры. Если априорно известна зависимость между электрическим сопротивлением Rt термопреобразователя сопротивления и его температурой t (т. е. Rt = f(t) — градуировочная характеристика), то, измерив Rt, можно определить значение температуры среды, в которую он погружен. Термопреобразователи позволяют надежно измерять температуру в пределах от - 260 до + 1100°С. К металлическим проводникам термопреобразователей сопротивления предъявляется ряд требований, основными из которых являются стабильность градуировочной характеристики, а также ее воспроизводимость,



обеспечивающая взаимозаменяемость изготовляемых термопреобразователей сопротивления. К числу не основных, но желательных требований относятся: линейность функции Rt = f(t) , по возможности высокое значение

температурного коэффициента электрического сопротивления
  1
Rt
dRt , dt

большое удельное сопротивление и невысокая стоимость материала. Исследованиями установлено, что чем чище металл, тем в большей степени он отвечает указанным основным требованиям и тем больше значения отношения R100/R0 и (где R0 и R100— электрические сопротивления металла при 0 и 100 °С соответственно). Поэтому степень чистоты металла, а также наличие в нем механических напряжений, принято характеризовать значениями R100/R0 и
. При снятии механических напряжений в металле путем его отжига

 R

0
указанные характеристики достигают своих предельных значений для данного металла. Изменение сопротивления материала с изменением температуры от 0

до 100 °С характеризуется коэффициентом


0,100


100
R0
/ R
100 . Металлы

имеют положительный температурный коэффициент сопротивления. Для большинства чистых металлов он равен 4-10-3—6.10-3 оC-1, что составляет увеличение электрического сопротивления при повышении температуры на один градус примерно на 0,4—0,6 % от сопротивления при 0 °С. Для изготовления стандартизованных термопреобразователей сопротивления в настоящее время применяют платину и медь. Платина является наилучшим материалом для термопреобразователей сопротивления, так как легко получается в чистом виде, обладает хорошей воспроизводимостью, химически инертна и окислительной среде при высоких температурах, имеет достаточно большой температурный коэффициент сопротивления, равный 3,94-10-3 °С-1, и высокое удельное сопротивление 0,1 - 10-6 Ом-м. Платиновые преобразователи сопротивления используются для измерения температуры от - 260 до + 1100 °С, при этом для диапазона температур от - 260 до +750 °С используются платиновые проволоки диаметром 0,05 - 0,1 мм, а для измерения температур до 1100 °С, в силу распыления платины при этих температурах, диаметр проволоки составляет около 0,5 мм. Значение отношения R100/R0 для применяемых платиновых проволок составляет 1,3850—1,3910. Платиновые термопреобразователи сопротивления являются наиболее точными первичными преобразователями в диапазоне температур, где они могут быть использованы. Платиновые термопреобразователи сопротивления используются в качестве рабочих, образцовых и эталонных термометров. С помощью последних осуществляется воспроизведение международной шкалы температур в диапазоне от - 182,97 до 630,5 °С. Недостатком платины является нелинейность функции Rt=f(t) и кроме того, платина — очень дорогой металл. Медь — один из недорогостоящих металлов, легко получаемых и чистом виде. Медные термопреобразователи сопротивлений предназначены для измерения температуры в диапазоне от —50 до +200 °С. При более высоких температурах медь активно окисляется и потому не используется. Диаметр медной проволоки обычно 0,1 мм, а значение отношения R100/R0 составляет 1,4260 - 1,4280. В

широком диапазоне температур зависимость сопротивления от температуры
линейна и имеет вид Rt R0 1  t , где  4,26 10 C . Никель и железо
3 o 1

благодаря своим относительно высоким температурным коэффициентам электрического сопротивления и сравнительно большим сопротивлениям хотя и используются для измерения температуры в диапазоне от - 50 до + 250 °С, однако широко не применяются. Это связано с тем, что градуировочная характеристика их нелинейна, а главное, не стабильна и не воспроизводима, и потому термопреобразователи сопротивления, изготовленные из этих металлов, не стандартизованы. Конструкция технических термометров с металлическим


.термопреобразователем сопротивления показана на рисунке 14.143.
Тонкая проволока или лента / из платины или меди наматывается бифилярно на каркас 2 из керамики, слюды, кварца, стекла или пластмассы. Бифилярная намотка необходима для исключения индуктивного сопротивления. После намотки обычно неизолированной платиновой проволоки каркас вместе с проволокой покрывают слюдой. Длина намотанной части каркаса с платиновой проволокой 50—100 мм, а с медной—40 мм. Каркас для защиты от повреждений помещают в тонкостенную алюминиевую гильзу 3, а для улучшения теплопередачи от измеряемой среды к намотанной части каркаса между последней и защитной гильзой 3 устанавливаются упругие металлические пластинки 4 или массивный металлический вкладыш. Помимо наматываемого проволокой каркаса используются двух- и четырехканальные керамические каркасы. В каналах размещают проволочные платиновые спирали, которые фиксируются в каналах каркаса с помощью термоцемента на основе оксида алюминия и кремния.
При изготовлении медных термопреобразователей сопротивления применяют безындукционную бескаркасную намотку. В качестве материала используют изолированную медную проволоку диаметром 0,08 мм, покрытую фторопластовой пленкой. Гильзу 3 с её содержимым помещают во внешний, обычно стальной, замкнутый чехол 5, который устанавливается на объекте измерения с помощью штуцера 6. На внешней стороне чехла располагается соединительная головка 8, в которой находится изоляционная колодка 7 с винтами для крепления выводных проводов, идущих от каркаса через изоляционные бусы 9. Термопреобразователи сопротивления по внешнему виду и размерам аналогичны термоэлектрическим преобразователям.
Динамическая характеристика термопреобразователей может быть

представлена передаточной функцией вида

Download 9,5 Mb.

Do'stlaringiz bilan baham:
1   ...   101   102   103   104   105   106   107   108   ...   181




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish