Conclusion
The test results have shown that portable XRF with
a 20 second spectrum is not very suitable for measuring
tarnish layer thickness. Perhaps, if the spectrum is rec-
orded for 999 seconds, and not 20, it will become smoother
and it will be possible to measure the layer thickness.
The error is approximately equal to the ratio of the layer
thickness to the depth of analysis in silver and, taking
into account the density, which is approximately 0.04%,
this is very small. To make a final conclusion, modern XRF
and its software calibration are required. To identify
a substance by its spectrum, an identification error is
required that is less than the percentage of possible sub-
stances (now about 30 million are known). Or almost all
substances should be excluded from consideration.
It seems that no one has tried to ground silver arti-
facts. Maybe grounding will reduce the growth rate of the
tarnishing layer, but maybe not. The test is necessary.
Bibliography:
1.
Pradyot Patnaik (2001). Handbook of inorganic chemical compounds. London: Mcgraw-Hill. ISBN 0070494398
2.
Jiang Yang C., Hao Liang C., & Liu X. (2007). Tarnishing of silver in environments with sulphur contamination.
Anti-Corrosion Methods and Materials, 54(1), 21–26. https://doi.org/10.1108/00035590710717357
3.
Reagor B.T., & Sinclair J.D. (1981). Tarnishing of Silver by Sulfur Vapor: Film Characteristics and Humidity Ef-
fects. Journal of The Electrochemical Society, 128(3), 701–705. https://doi.org/10.1149/1.2127485
4.
Bennett J.M., Stanford J.L., & Ashley E.J. (1970). Optical Constants of Silver Sulfide Tarnish Films. Journal of the
Optical Society of America, 60(2), 224. https://doi.org/10.1364/josa.60.000224
5.
Rhines F.N. (1956). Phase diagrams in metallurgy : their development and application. New York: Mcgraw-Hill,
ISBN 9780070520707
6.
Palomar T. & Ramirez Barat B. & Cano E. (2018). Evaluation of Cleaning Treatments For Tarnished Silver:
The Conservator´s Perspective. International Journal of Conservation Science. 9. 81-90.
7.
Patent, https://patents.google.com/patent/RU2177053C2/en, Retrieved 01.01.2021
8.
Burstein G.T. (2019). The tarnishing conundrum of silver.
9.
Selwyn L., (2016) Understanding how silver objects tarnish, https://www.canada.ca/en/conservation-institute/ser-
vices/training-learning/in-person-workshops/understanding-silver-tarnish.html, retrieved at 01.09.21
10.
Inaba M., (1996) Tarnishing of Silver: A Short Review, Conservation Journal January 1996 Issue 18,
http://www.vam.ac.uk/content/journals/conservation-journal/issue-18/tarnishing-of-silver-a-short-review/, retrieved
at 01.09.21
11.
J.A. Manion, R.E. Huie, R.D. Levin, D.R. Burgess Jr., V.L. Orkin, W. Tsang, W.S. McGivern, J.W. Hudgens,
V.D. Knyazev, D.B. Atkinson, E. Chai, A.M. Tereza, C.-Y. Lin, T.C. Allison, W.G. Mallard, F. Westley, J.T. Herron,
R.F. Hampson, and D.H. Frizzell, NIST Chemical Kinetics Database, NIST Standard Reference Database 17,
Version 7.0 (Web Version), Release 1.6.8, Data version 2015.09, National Institute of Standards and Technology,
Gaithersburg, Maryland, 20899-8320. Web address: https://kinetics.nist.gov/
12.
Lin H., Frankel G.S., & Abbott W.H. (2013). Analysis of Ag Corrosion Products. Journal of The Electrochemical
Society, 160(8), C345–C355. https://doi.org/10.1149/2.055308jes
13.
Fang Jingli and Yu Yaohua (1985) XPS and AES Study on the Tarnishing Mechanism of Silver-Electroplated De-
posit(Ⅱ) Mechanism of Tarnishing Caused by Exposure to Light and Na_2S Treatment, CIESC journal
14.
Saleh G., Xu C., & Sanvito S. (2019). Silver Tarnishing Mechanism Revealed by Molecular Dynamics Simulations.
Angewandte Chemie International Edition, 58(18), 6017–6021. https://doi.org/10.1002/anie.201901630
15.
Senftle T.P., Hong S., Islam M.M., Kylasa S.B., Zheng Y., Shin Y.K., Junkermeier C., Engel-Herbert R., Janik M.J.,
Aktulga H.M., Verstraelen T., Grama A., & van Duin A. C. T. (2016). The ReaxFF reactive force-field: development,
applications and future directions. Npj Computational Materials, 2(1). https://doi.org/10.1038/npjcompumats.2015.11
16.
Doménech-Carbó A., Doménech-Carbó M.T., Capelo S., Pasíes T., & Martínez-Lázaro I. (2014). Dating Archaeo-
logical Copper/Bronze Artifacts by Using the Voltammetry of Microparticles. Angewandte Chemie International
Edition, 53(35), 9262–9266. https://doi.org/10.1002/anie.201404522
17.
Turner E.,. (1993). Silver plating in the 18th century. In Metal Plating and Patination,
18.
Elsevier. https://doi.org/10.1016/b978-0-7506-1611-9.50024
19.
Metropoliten Museum # 200377 and others
20.
Gryniewicz-Ruzicka C.M., Rodriguez J.D., Arzhantsev S., Buhse L.F., & Kauffman J.F. (2012). Libraries, classifi-
ers, and quantifiers: A comparison of chemometric methods for the analysis of Raman spectra of contaminated phar-
maceutical
materials.
Journal
of
Pharmaceutical
and
Biomedical
Analysis,
61,
191–198.
https://doi.org/10.1016/j.jpba.2011.12.002
21.
Martina Irene & Wiesinger Rita & Jembrih-Simbuerger, Dubravka & Schreiner, Manfred. (2012). Micro-Raman
characterisation of silver corrosion products. e-Preservation Science. 9. 1-8.
№ 10 (91)
октябрь, 2021 г.
__________________________
Библиографическое описание: POLYTHERMAL SOLUBILITY OF THE NaClO3∙CO(NH2)2-H2SO4∙NH2C2H4OH-
H2O SYSTEM // Universum: технические науки : электрон. научн. журн. Sidikov A.A. [и др.]. 2021. 10(91).
URL:
https://7universum.com/ru/tech/archive/item/12410
Do'stlaringiz bilan baham: |