Вязкость пластовой воды зависит в первую очередь, от температуры, а также от минерализации и химического состава. В большинстве случаев вязкость пластовых вод нефтяных и газовых месторождений составляет 0,2 – 1,5 мПа×с.
На величину вязкости воды влияет не только минерализация, но и состав солей. Наибольшей вязкостью характеризуются хлоркальциевые воды в 1,5–2 раза больше, чем чистая вода (рис.4.4.). Газы в воде растворены в небольших количествах и мало влияют на вязкость.
Рис.4.4. Зависимость вязкости от температуры:
а – морской и чистой воды; б – хлоркальциевой воды
Электропроводность пластовых вод находится в прямой зависимости от их минерализации, так как соли в воде находятся в ионном состоянии, а положительно и отрицательно заряженные ионы являются переносчиками электрических зарядов. Величина удельного сопротивления подземных вод изменяется от 0,02 до 1,00 Ом · м. Дистиллированная вода и лед не являются проводниками электрического тока. Так как нефть и газ имеют низкую электропроводность, а минерализованные подземные воды – высокую электропроводность, то эти свойства используют для контроля за продвижением водоуглеводородных контактов. Электропроводность воды используют для определения пористости и водо-, газо-, нефтенасыщенности коллекторов.
Тема 5. Условия эксплуатации нефтяных и газовых скважин
5.1 Условие притока флюидов к забоям скважин под действием упругих сил
Приток жидкости, газа, воды или их смесей к скважинам происходит в результате установления на забое скважин давления меньшего, чем в продуктивном пласте. Течение жидкости к скважинам исключительно сложно и не всегда поддается расчету. Лишь при геометрически правильном размещении скважин (линейные или кольцевые ряды скважин и правильные сетки), а также при ряде допущений (постоянство толщины, проницаемости и других параметров) удается аналитически рассчитать дебиты этих скважин при заданных давлениях на забоях или, наоборот, рассчитать давление при заданных дебитах. Однако вблизи каждой скважины в однородном пласте течение жидкости становится близким к радиальному. Это позволяет широко использовать для расчетов радиальную схему фильтрации.
Жидкость последовательно проходит через ряд поверхностей концентрически расположенных к поверхности пласта, причем площадь данных поверхностей падает по мере приближения к забою скважины.
При неизменной мощности пласта и его однородном строении скорость фильтрации движущейся к скважине жидкости при постоянном расходе непрерывно возрастает, достигая максимума на стенках скважины.
При росте скоростей увеличиваются гидравлические сопротивления. Следовательно при перемещении единицы объема жидкости (или газа) по направлению к скважине непрерывно возрастают затраты энергии на единицу длины пути или связанные с этим перепады давления на единицу длины пути (градиенты давления).
Для определения зависимости между дебитом скважины и перепадом давления вокруг нее воспользуемся законом линейной фильтрации Дарси, по которому скорость линейной фильтрации прямо пропорциональна перепаду давления и обратно пропорциональна вязкости фильтрующей жидкости.
Скорость фильтрации, согласно закону Дарси, записанному в дифференциальной форме, определяется следующим образом:
, (5.1)
где: k - проницаемость пласта;
μ - динамическая вязкость;
dp/dr - градиент давления вдоль радиуса (линии тока).
По всем линиям тока течение будет одинаковое. Другими словами, переменные, которыми являются скорость фильтрации и градиент давления, при изменении угловой координаты (в случае однородного пласта) останутся неизмененными, что позволяет оценить объемный расход жидкости q как произведение скорости фильтрации на площадь сечения пласта. В качестве площади может быть взята площадь сечения цилиндра 2πrh произвольного радиуса r, проведенного из центра скважины, где h - действительная толщина пласта, через который происходит фильтрация.
Тогда
, (5.2)
Проинтегрируем в пределах области фильтрации, то есть от стенок скважины rc с давлением Рс до внешней окружности Rк, называемой контуром питания, на котором существует постоянное давление Рк.
Уравнение распределения давления вокруг скважины:
, (5.3)
Из (5.3) следует, что функция P(r) является логарифмической, т. е. давление вблизи стенок скважины изменяется сильно, а на удаленном расстоянии - слабо. Это объясняется увеличением скоростей фильтрации при приближении струек тока к стенкам скважины, на что расходуется больший перепад давления.
Эта логарифмическая функция (линия изменения давления) показывает, что в процессе эксплуатации скважины вокруг нее образуется как бы воронка депрессии (рис.5.1.), в пределах которой градиент давления, а значит, и расходы энергии на единицу длины пути возрастают по мере приближения к скважине. Значительная часть общего перепада давления в пласте расходуется в непосредственной близости от скважины; по мере удаления от нее кривые градиентов давления выполаживаются вследствие резкого уменьшения скоростей фильтрации на далеких расстояниях от скважины.
Рис.5.1.График распределения давления
Дебит скважины:
. (5.4)
Формула (5.4) называется формулой Дюпюи.
Отношение дебита скважины к перепаду давления (депрессии) называется коэффициентом продуктивности скважины:
(5.5)
Зависимость дебита скважины Q от депрессии ΔР = РК – Рс называется индикаторной линией (рис.5.2). При плоскорадиальной фильтрации несжимаемой жидкости к скважине в условиях справедливости закона Дарси индикаторная линия представляет собой прямую, определяемую уравнением:
(5.6)
Рис.5.2. Индикаторная линия плоскорадиального потока несжимаемой жидкости по закону Дарси.
5.2 Стационарные и нестационарные режимы исследования скважин (индикаторная кривая и кривая восстановления давления).
Для изучения свойств пластов и продуктивности скважин применяют различные виды гидродинамических исследований, которые можно подразделить на две группы. К первой относится метод установившихся отборов, ко второй — методы наблюдения за изменением (восстановлением) забойного давления в остановленной скважине после ее эксплуатации с постоянным расходом нефти (газа) и гидропрослушивания пласта.
Непосредственно этими методами можно определить коэффициент продуктивности (приемистости) скважин, гидропроводность пласта, пластовое давление, пьезопроводность пласта, а в сочетании с лабораторными и геофизическими исследованиями – проницаемость пласта и радиус скважины
Рассмотрим общие теоретические основы изучения свойств пластов по данным наблюдений за работой скважин.
Do'stlaringiz bilan baham: |