Toshloq
tumani
1.
B
(4; 2; 0) nuqta
)
1
;
3
;
2
(
a
vektorning oxiri bo‗lsa, bu vektor
boshining
koordinatalarini toping.
A) (-6; 1; 1)
B) (6; 1; 1)
C) (6; -1; 1)
D) (6; -1; -1)
E) (-6; -1; 1)
2.
A
(3; -2; 5) va
B
(-4; 5; -2) nuqtalar berilgan
BA
vektorning koordinatalarini toping.
A) (7; -7; -7)
B) (-1; 3; 3)
C) (-7; 7; -7)
D) (-7; -7; 7)
E) (7; -7; 7)
3. Agar
)
1
;
0
;
2
(
a
va
)
3
;
2
;
1
(
b
bo‗lsa,
b
a
n
2
vektorning uzunligini toping.
A) 9
B)
2
9
C) 16
D) 13
E)
3
5
4.
y
ning qanday qiymatlarida
k
j
y
i
b
15
12
vektorning uzunligi 25 ga teng?
A) 14
B) 16
C) 14 va –14
D) 2
E) 16 va –16
5.
A
(1; 0; 1),
B
(-1; 1; 2) va
C
(0; 2; -1) nuqtalar berilgan. Koordinatalar boshi
O
nuqtada
joylashgan. Agar
0
CD
AB
bo‗lsa,
OD
vektorning uzunligini toping.
A) 4
B) 2
C) 9
D) 3
E) 6
6.
)
2
;
4
;
0
(
a
va
)
3
;
2
;
2
(
b
vektorlarning skalyar ko‗paytmasini hisoblang.
A) 14
B) 2
C) -2
D) 10
E) –14
7.
j
i
,
va
k
- koordinata o‗qlari bo‗ylab yo‗nalgan vektorlar va
k
j
i
a
3
2
5
bo‗lsa,
a
va
i
vektorlar orasidagi burchakning kosinusini toping.
A)
6
5
B)
3
2
C)
4
3
D)
2
1
E)
7
6
8.
j
i
a
2
va
k
j
b
2
vektorlardan yasalgan parallelogrammning diagonallari
orasidagi burchakni toping.
A)
21
1
arccos
B)
6
C)
21
2
arccos
D)
2
E)
21
3
arccos
9.
m
ning qanday qiymatida
)
4
;
3
;
2
(
a
va
)
8
;
6
;
(
m
b
vektorlar parallel bo‗ladi?
A) 2
B) 4
C) -4
D) 3
E) 5
10.
n
ning qanday qiymatida
)
4
;
2
;
(
n
a
va
)
4
;
4
;
(
n
n
b
vektorlar perpendikulyar bo‗ladi?
A) 2
B) 5
C) 6
D) 4
E) 3
11. Uchburchakning uchlari
A
(3; -2; 1),
B
(3; 0; 2) va
C
(1; 2; 5) nuqtalarda joylashgan.
Shu uchburchakning
BD
medianasi va
AC
asosi orasidagi burchakni toping.
A) 30
0
B) 60
0
C) 45
0
D)
3
1
arccos
E) 75
0
12.
m
ning qanday qiymatida
)
4
;
3
;
2
(
a
va
)
8
;
6
;
(
m
b
vektorlar parallel bo‗ladi?
A) 2
B) 4
C) -4
D) 3
E) 5
4. Darsni yakunlash.
5. Uyga vazifa: test yechish tematik axborotnomalardan
Tayyorladi: _________________________
Tekshirdi: O‘TIBDO‗ : __________ _________________________
―_____‖____ 201 y.
Toshloq tumani
1. ABC uchburchakning B va C burchaklari bissektrisalari 128
o
burchak ostida
kesishadi. A burchakning kiymatini toping.
A)104
o
B)76
0
C)72
o
D)66
o
E)52
o
(2001-8-38)
2. AN AVS uchburchakning bissekrisasi. Agar AVqVN va
Cq30
o
bo‘lsa, V burchak
necha gradusga teng?
A)40
o
B)50
o
C) 60
o
D) 70
o
E) 80
o
(2002-9-48)
3. AVS uchburchakda A va V burchaklari bissektrisalari kesishishidan hosil bo‘lgan
kichik burchak 40
o
ga teng. Uchburchakning S burchagini toping.
A)100
o
B)90
o
S)80
o
D)120
o
E)70
o
(2002-8-23)
4. Teng yonli uchburchakning asosidagi tashqi burchagi, unga qo‘shni burchakdan 40
o
ga katta. Teng yonli uchburchakning uchidagi burchagini toping.
A)30
0
B)40
0
C)42
0
D)36
0
E)38
0
(2001-6-52)
5. Uchburchakning tashki burchaklaridan biri 120
o
ga, shu burchakka kushni bulmagan
ichki burchaklarining ayirmasi 30
o
ga teng. Uchburchakning ichki burchaklaridan
kattasini toping.
A)75
0
B)70
o
C)90
o
D)85
o
E)80
o
(2001-8-36)
6. Teng yonli uchburchakning ichki burchaklari va uchidagi tashqi burchagi yig‘indisi
21
16
ga teng. Uchburchakning teng burchaklari yig‘indisini toping.
A)
16
11
B)
16
9
C)
3
D)
8
3
E)
16
5
(2001-7-54)
7. To‘g‘ri burchakli uchburchakda to‘g‘ri burchak uchidan gipotenuzagacha
tushirilgan
balandlik ham, katetlarning gipotenuzadagi proektsiyalari ayirmasi ham 6 ga teng.
Gipotenuzaning uzunligini toping.
Do'stlaringiz bilan baham: