4. Darsni yakunlash.
5. Uyga vazifa: test yechish tematik axborotnomalardan
Tayyorladi: _________________________
Tekshirdi: O‘TIBDO‗ : __________ _________________________
―_____‖____ 201 y.
40
7
28
3
35
13
250
18
625
14
64
3
75
32
375
11
1109
1107
m
2220
2216
n
n
m
n
m
n
m
2220
2
2
m
,
36
7
a
,
34
11
b
,
32
7
c
25
9
d
d
c
b
а
c
d
a
b
,
3
5
,
0
a
,
90
47
b
.
1
48
,
0
1
c
,
4
6
,
0
a
,
90
59
b
.
9
36
,
0
1
c
,
11
5
a
,
7
3
b
13
6
c
,
150
49
a
,
300
102
b
75
22
c
3
2222
,
0
);
223
(
2
,
0
;
23
22
,
0
l
n
m
l
m
n
n
m
l
l
n
m
n
l
m
m
l
n
Toshloq tumani
Sana:_____________
13-mashg‘ulot
Dars mavzusi
.
Algebraik ifodalar.
Dars
maqsadlari
:
o‗quvchilarga
algebraik
ifodalarni
o‗rgatish,
ularning fanga qiziqishlarini oshirish.
Darsning borishi
:
1. Tashkiliy qism.
2. Algebraik ifodalar.
Algebraik ifodalar.
Harflar yoki raqamlar va harflar bilan ifodalangan bir necha hadlarni amallar
yordamida birlashtirishdan iborat bo‗lgan yozuv algebraik ifoda deyiladi.
Masalan:
.
Algebraik ifodaning qiymati deb, undagi harflar o‗rniga berilgan son qiymatlarini
qo‗yib, shu sonlar ustida tegishli amallarni bajargandan keyin kelib chiqqan songa
aytiladi.
Misol:
ifodaning qiymatini toping, bu yerda
x
=24,
y
=2
Yechish:
Harflar yordamida juft va toq sonlar formulasini yozish mumkin. Agar
a
juft
son bo‗lsa:
a
=2
n
agar
b
toq son bo‗lsa:
b
=2
n
+1
bu yerda:
n
–natural son yoki nol.
Arifmetik amallarning xossalari:
I. Qo‗shish va ko‗paytirish.
1) o‗rin almashtirish qonuni
a+b=b+a, a
b=b
a
2) guruxlash qonuni
(
a+b
)+
c
=
a
+(
b+c
), (
a
b
)
c
=
a
(
b
c
)
3) taqsimot qonuni
a
(
b+c
)=
a
b+a
c
II. Ayirish.
Ayirishni qarama – qarshi songa qo‗shish bilan almashtirish mumkin:
a-b=a
+(-
b
)
III. Bo‗lish.
Bo‗lish bo‗luvchiga teskari bo‗lgan songa ko‗paytirish bilan almashtirish mumkin:
Nol sonining xossalari:
a
+0=
a
,
a
- 0=
a
,
a
0=0,
- mavjud emas.
c
a
d
cd
в
а
x
x
y
x
ав
;
3
10
;
5
1
3
;
100
,
2
y
x
100
.
25
6
2
2
25
6
2
100
24
b
a
b
a
1
0
a
Toshloq tumani
3. Mustahkamlash.
Test yechiladi.
TESTLAR.
1.
a
=4
b
va
c
+3
b
=0 (
b
0) bo‗lsa, ni toping.
A)
B)
C)
D)
E)
2. Agar
ab
=9 va 3
b
=8
c
bo‗lsa,
ac
ni hisoblang.
A)
B)
C)
D)
E)
3.
a
sonning
b
songa nisbati ga teng,
c
sonning
b
songa nisbati ga teng,
c
sonning
a
songa nisbatini toping.
A)
B)
C)
D)
E)
4. 26
25–25
24+24
23–23
22–12
8 ning qiymatini toping.
A) 106
B) 1
C) 54
D) 8
E) 0
5. 21
18–19
18+18
17–17
16+16
15–15
14 ning qiymatini toping.
A) 50
B) 100
C) 98
D) 24
E) 110
6. 18
36–16
36+24
27–25
24–21
5 ning qiymatini toping.
A) 45
B) 1
C) 0
D) 15
E) 115
7. 21
13+24
13+45
12+25
44–89
24 ning qiymatini toping.
A) 79
B) 126
C) 89
D) 0
E) 1
8. 36
24–33
24+17
11–14
11+18
16–15
16 ni hisoblang.
A) 166
B) 155
C) 180
D) 2354
E) 153
9. 27
23–24
23+21
19–18
19+17
11–14
11 ni hisoblang.
A) 165
B) 159
C) 143
D) 203
E) 189
10. 21
17–18
17+17
15–15
14+18
13–15
13 ni hisoblang.
A) 125
B) 135
C) 205
D) 180
E) 165
11. 139
15+18
139+15
261+18
261 ni hisoblang.
A) 13200 B) 16200 C) 14500 D) 17500 E) 15100
12. Agar
x
=4,5 va
y
=3,5 bo‗lsa,
x
3
–
x
2
y
–
xy
2
+
y
3
ni hisoblang.
A) 10
B) 9,5
C) 8
D) 7,2
E) 11
13. Agar
x
=71,8 va
y
=70,8 bo‗lsa,
x
3
–
y
3
–2
y
2
–3
y
–1+
x
2
–2
xy
ni hisoblang.
A) 1
B) 21
C) 79
D) 87,5
E) 92,1
14. Agar
bo‗lsa,
ifodaning qiymatini toping.
A)
B)
C) 1
D)
E) 2
4. Darsni yakunlash.
5. Uyga vazifa: test yechish tematik axborotnomalardan
Tayyorladi: _________________________
Tekshirdi: O‘TIBDO‗ : __________ _________________________
―_____‖____ 201 y.
с
а
3
1
1
3
2
1
3
1
1
3
1
3
2
7
5
3
9
4
3
8
5
3
3
1
3
8
3
3
3
2
2
1
3
2
6
5
7
5
4
3
5
4
b
a
2
1
1
2
2
ab
b
a
4
3
2
1
1
4
1
1
Toshloq tumani
Sana:_____________
14-mashg‘ulot
Dars mavzusi
.
Natural ko‘rsatkichli daraja.
Dars maqsadlari
: o‗quvchilarga natural ko‗rsatkichli darajani o‗rgatish,
ularning fanga qiziqishlarini oshirish.
Darsning borishi
:
1. Tashkiliy qism.
2. Natural ko‘rsatkichli daraja.
Natural ko‘rsatkichli daraja.
Ushbu
ifoda natural ko‗rsatkichli daraja deyiladi, bu yerda
n
N
.
Xossalari.
1)
2)
3)
4)
5)
6)
a
0
=1.
Ikki xonali son xona qo‗shiluvchilari yig‗indisi shaklida quyidagicha yozilishi
mumkin:
a
10+
b
, bu yerda
a
– o‗nliklar soni,
b
– birliklar soni; uch xonali sonni
a
10
2
+
b
10+
c
ko‗rinishda yozish mumkin, bu yerda
a
– yuzliklar soni,
b
–o‗nliklar soni,
c
–birliklar soni. To‗rt xonali, besh xonali va h.k. sonlar ham xuddi shu tartibda xona
qo‗shiluvchilari yig‗indisi shaklida yoziladi.
Misol: Quyidagi sonlarni xona qo‗shiluvchilari yig‗indisi shaklida yozing.
Yechish: 1) 235121=2
10
5
+3
10
4
+5
10
3
+1
10
2
+2
10+1;
2) 3532037=3
10
6
+5
10
5
+3
10
4
+2
10
3
+3
10+7;
3) 701508=7
10
5
+1
10
3
+5
10
2
+8;
10101=1
10
4
+1
10
2
+1.
3. Mustahkamlash.
Test yechiladi.
TESTLAR.
1. Quyidagilardan qaysi biri –1 ga teng?
A) (-(-1)
2
)
3
B) (-(-1)
2
)
4
С) (-(-1)
3
)
6
D) ((-1)
3
)
2
E) ((-1)
2
)
4
2. Quyidagi ifodalardan qaysi biri 1 ga teng?
A) (-(-1)
3
)
3
B) –((-1)
5
)
4
С) ((-1)
3
)
5
D) (-(-1)
2
)
3
E) –((-1)
2
)
3
3. Quyidagi ifodalardan qaysi biri 1 ga teng?
A) ((-1)
5
)
2
B) (-(-1)
4
)
5
С) ((-1)
3
)
3
D) (-(-1)
2
)
3
E) ((-1)
3
)
5
4.
ni soddalashtiring.
A) 2
4n+2
B) 2
2n-2
С) 2
n-2
D) 2
4n-2
E) 2
4n+1
5.
ni soddalashtiring.
A) 2
4n+1
B) 2
2n-2
С) 2
n-2
D) 2
4n-1
E) 2
4n-2
6.
ni soddalashtiring.
A) 2
5n
B) 2
4n+2
С) 2
4n+1
D) 2
3n
E) 2
4n
n
n
a
a
a
a
...
;
m
n
m
n
a
a
a
;
:
m
n
m
n
a
a
a
;
m
n
m
n
a
a
;
n
n
n
b
a
b
a
;
0
,
0
b
a
b
a
b
a
n
n
n
1
4
1
3
3
5
2
2
2
n
n
n
1
4
4
3
3
5
2
2
2
n
n
n
n
n
n
n
1
1
4
3
3
3
5
2
2
2
2
Toshloq tumani
7.
kasrni qisqartiring.
A)
B)
C)
D)
E)
8.
ni soddalashtiring.
A) 4
-1
5
-k
B) 4
-2
5
-k
C) 4
5
-k
D) 2
-1
5
-k
E) 2
5
-k
9.
ni soddalashtiring.
A) 2
3n
B) 2
4n+1
C) 2
4n+2
D) 2
5n
E) 2
4n
10.
ni soddalashtiring.
A) 3
5n+2
B) 3
5n+3
C) 3
5n+1
D) 3
5n-1
E) 3
5n+4
11. 5
.
4
2n-3
-20
.
(2
n-2
)
4
ifodani soddalashtiring.
A) 2
B) 4
2n
C) 4
D) 2
n-1
E) 0
12.
ning qiymati 9 dan qancha kam?
A) 4,5
B) 3
С) 3,5
D) 4
E) 5,5
13. Agar 3
a
–3
=11 bo‗lsa, 3
5–
a
ning qiymatini toping.
A)
B)
C) 99 D)
E)
14. 20 dan katta bo‗lmagan barcha natural sonlarning ko‗paytmasi
n
(
n
N
) ning
qanday eng katta qiymatida 2
n
ga qoldiqsiz bo‗linadi?
A) 16
B) 20
C) 18
D) 10
E) 14
Do'stlaringiz bilan baham: |