Ribozymes
Not all catalysis within the cell is carried out exclusively by proteins. Thomas Cech and Sidney Altman, jointly awarded a Nobel Prize in 1989, discovered that certain RNAs, now known as ribozymes, showed enzymatic activity. Cech showed that a noncoding sequence (intron) in the small subunit rRNA of protozoans, which had to be removed before the rRNA was functional, can excise itself from a much longer precursor RNA molecule and rejoin the two ends in an autocatalytic reaction. Altman showed that the RNA component of an RNA protein complex called ribonuclease P can cleave a precursor tRNA to generate a mature tRNA. In addition to self-splicing RNAs similar to the one discovered by Cech, artificial RNAs have been made that show a variety of catalytic reactions. It is now widely held that there was a stage during evolution when only RNA catalyzed and stored genetic information. This period, sometimes called “the RNA world,” is believed to have preceded the function of DNA as genetic material.
Antisense RNAs
Most antisense RNAs are synthetically modified derivatives of RNA or DNA with potential therapeutic value. In nature, antisense RNAs contain sequences that are the complement of the normal coding sequences found in mRNAs (also called sense RNAs). Like mRNAs, antisense RNAs are single-stranded, but they cannot be translated into protein. They can inactivate their complementary mRNA by forming a double-stranded structure that blocks the translation of the base sequence. Artificially introducing antisense RNAs into cells selectively inactivates genes by interfering with normal RNA metabolism.
Viral genomes
Many viruses use RNA for their genetic material. This is most prevalent among eukaryotic viruses, but a few prokaryotic RNA viruses are also known. Some common examples include poliovirus, human immunodeficiency virus (HIV), and influenza virus, all of which affect humans, and tobacco mosaic virus, which infects plants. In some viruses the entire genetic material is encoded in a single RNA molecule, while in the segmented RNA viruses several RNA molecules may be present. Many RNA viruses such as HIV use a specialized enzyme called reverse transcriptase that permits replication of the virus through a DNA intermediate. In some cases this DNA intermediate becomes integrated into the host chromosome during infection; the virus then exists in a dormant state and effectively evades the host immune system.
Other RNAs
Many other small RNA molecules with specialized functions are present in cells. For example, small nuclear RNAs (snRNAs) are involved in RNA splicing (see below), and other small RNAs that form part of the enzymes telomerase or ribonuclease P are part of ribonucleoprotein particles. The RNA component of telomerase contains a short sequence that serves as a template for the addition of small strings of oligonucleotides at the ends of eukaryotic chromosomes. Other RNA molecules serve as guide RNAs for editing, or they are complementary to small sections of rRNA and either direct the positions at which methyl groups need to be added or mark U residues for conversion to the isomer pseudouridine.
Do'stlaringiz bilan baham: |