The McGraw-Hill Series Economics essentials of economics brue, McConnell, and Flynn Essentials of Economics



Download 5,05 Mb.
Pdf ko'rish
bet398/868
Sana20.06.2022
Hajmi5,05 Mb.
#684913
1   ...   394   395   396   397   398   399   400   401   ...   868
(12.2.6)
and its variance is given by
var (
ˆ
β
2
)
=
σ
2
x
2
i
(12.2.7)
where the small letters as usual denote deviation from the mean values.
420
Part Two
Relaxing the Assumptions of the Classical Model
9
This name can be easily justified. By definition, the (population) coefficient of correlation between
u
t
and 
u
t

1
is
ρ
=
E
{
[
u
t

E
(
u
t
)][
u
t

1

E
(
u
t

1
)]
}
var (
u
t
)
var (
u
t

1
)
=
E
(
u
t
u
t

1
)
var (
u
t

1
)
since 
E
(
u
t
)
=
0 for each 
t
and var (
u
t
)
=
var (
u
t

1
) because we are retaining the assumption of
homoscedasticity. The reader can see that 
ρ
is also the slope coefficient in the regression of 
u
t
on 
u
t

1
.
guj75772_ch12.qxd 14/08/2008 10:40 AM Page 420


Chapter 12
Autocorrelation: What Happens If the Error Terms Are Correlated?
421
Now under the AR(1) scheme, it can be shown that the variance of this estimator is:
var (
ˆ
β
2
)
AR1
=
σ
2
x
2
t
1
+
2
ρ
x
t
x
t

1
x
2
t
+
2
ρ
2
x
t
x
t

2
x
2
t
+ · · · +
2
ρ
n

1
x
1
x
n
x
2
t
(12.2.8)
where var (
ˆ
β
2
)
AR1
means the variance of 
ˆ
β
2
under a first-order autoregressive scheme.
A comparison of Eq. (12.2.8) with Eq. (12.2.7) shows the former is equal to the latter
times a term that depends on 
ρ
as well as the sample autocorrelations between the values
taken by the regressor 
X
at various lags.
10
And in general we cannot foretell whether
var (
ˆ
β
2
) is less than or greater than var (
ˆ
β
2
)
AR1
(but see Eq. [12.4.1] below). Of course, if 
ρ
is zero, the two formulas will coincide, as they should (why?). Also, if the correlations
among the successive values of the regressor are very small, the usual OLS variance of the
slope estimator will not be seriously biased. But, as a general principle, the two variances
will not be the same.
To give some idea about the difference between the variances given in Eqs. (12.2.7) and
(12.2.8), assume that the regressor 
X
also follows the first-order autoregressive scheme
with a coefficient of autocorrelation of 
r
. Then it can be shown that Eq. (12.2.8) reduces to:
var (
ˆ
β
2
)
AR(1)
=
σ
2
x
2
t
1
+
r
ρ
1

r
ρ
=
var (
ˆ
β
2
)
OLS
1
+
r
ρ
1

r
ρ

Download 5,05 Mb.

Do'stlaringiz bilan baham:
1   ...   394   395   396   397   398   399   400   401   ...   868




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish