The McGraw-Hill Series Economics essentials of economics brue, McConnell, and Flynn Essentials of Economics


first-order coefficient of autocorrelation



Download 5,05 Mb.
Pdf ko'rish
bet397/868
Sana20.06.2022
Hajmi5,05 Mb.
#684913
1   ...   393   394   395   396   397   398   399   400   ...   868
first-order coefficient of autocorrelation,
or more accurately, the
coefficient of autocorrelation at lag 1.
9
Given the AR(1) scheme, it can be shown that (see Appendix 12A, Section 12A.2):
var (
u
t
)
=
E
u
2
t
=
σ
2
ε
1

ρ
2
(12.2.3)
cov (
u
t
,
u
t
+
s
)
=
E
(
u
t
u
t

s
)
=
ρ
s
σ
2
ε
1

ρ
2
(12.2.4)
cor (
u
t
,
u
t
+
s
)
=
ρ
s
(12.2.5)
where cov (
u
t
,
u
t
+
s
) means covariance between error terms 
s
periods apart and where
cor (
u
t
,
u
t
+
s
) means correlation between error terms 
s
periods apart. Note that because of
the symmetry property of covariances and correlations, cov (
u
t
,
u
t
+
s
)
=
cov (
u
t
,
u
t

s
) and
cor (
u
t
,
u
t
+
s
)
=
cor (
u
t
,
u
t

s
).
Since 
ρ
is a constant between 

1 and 
+
1, Eq. (12.2.3) shows that under the AR(1)
scheme, the variance of 
u
t
is 
still homoscedastic
, but 
u
t
is correlated not only with its im-
mediate past value but its values several periods in the past. It is 
critical
to note that
|
ρ
|
<
1, that is, the absolute value of 
ρ
is less than 1. If, for example, 
ρ
is 1, the variances
and covariances listed above are not defined. If 
|
ρ
|
<
1, we say that the AR(1) process
given in Eq. (12.2.1) is 
stationary;
that is, the mean, variance, and covariance of 
u
t
do not
change over time. If 
|
ρ
|
is less than 1, then it is clear from Eq. (12.2.4) that the value of the
covariance will decline as we go into the distant past. We will see the utility of the preced-
ing results shortly.
One reason we use the AR(1) process is not only because of its simplicity compared to
higher-order AR schemes, but also because in many applications it has proved to be quite
useful. Additionally, a considerable amount of theoretical and empirical work has been
done on the AR(1) scheme.
Now return to our two-variable regression model: 
Y
t
=
β
1
+
β
2
X
t
+
u
t
. We know from
Chapter 3 that the OLS estimator of the slope coefficient is
ˆ
β
2
=
x
t
y
t
x
2
t

Download 5,05 Mb.

Do'stlaringiz bilan baham:
1   ...   393   394   395   396   397   398   399   400   ...   868




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish