The McGraw-Hill Series Economics essentials of economics brue, McConnell, and Flynn Essentials of Economics


Cochrane–Orcutt iterative procedure



Download 5,05 Mb.
Pdf ko'rish
bet432/868
Sana20.06.2022
Hajmi5,05 Mb.
#684913
1   ...   428   429   430   431   432   433   434   435   ...   868
Cochrane–Orcutt iterative procedure,
the 
Cochrane–
Orcutt two-step procedure,
the
Durbin two–step procedure,
and the
Hildreth–Lu
scanning or search procedure.
Of these, the most popular is the Cochran–Orcutt iterative
method. To save space, the iterative methods are discussed by way of exercises. Remember
that the ultimate objective of these methods is to provide an estimate of 
ρ
that may be used
to obtain GLS estimates of the parameters. One advantage of the Cochrane–Orcutt iterative
method is that it can be used to estimate not only an AR(1) scheme, but also higher-order
autoregressive schemes, such as 
ˆ
u
t
= ˆ
ρ
1
ˆ
u
t

1
+ ˆ
ρ
2
ˆ
u
t

2
+
v
t
, which is AR(2). Having ob-
tained the two 
ρ
s, one can easily extend the generalized difference equation (12.9.6). Of
course, the computer can now do all this.
Returning to our wages–productivity regression, and assuming an AR(1) scheme, we
use the Cochrane–Orcutt iterative method, which gives the following estimates of 
ρ
:
0.8876, 0.9944, and 0.8827. The last value of 0.8827 can now be used to transform the
original model as in Eq. (12.9.6) and estimate it by OLS. Of course, OLS on the trans-
formed model is simply the GLS. The results are as follows:
Stata can estimate the coefficients of the model along with 
ρ
. For example, if we assume
the AR(1), Stata produces the following results:
ˆ
Y

t
=
43.1042
+
0.5712
X
t
se
=
(4.3722)
(0.0415)
(12.9.16)
t
=
(9.8586) (13.7638)
r
2
=
0.8146
From these results, we can see that the estimated rho (
ˆ
ρ
) is 
0.8827, which is not very
much different from the 
ˆ
ρ
in Eq. (12.9.15).
As noted before, in the generalized difference equation (12.9.6) we lose one observation
because the first observation has no antecedent. To avoid losing the first observation, we
can use the 
Prais–Winsten transformation. 
Using this transformation, and using STATA
(version 
10), we obtain the following results for our wages–productivity regression:
Rcompb
t
=
32.0434

0.6628 Prodb
t
se 
=
(3.7182)
(0.0386)
r
2
=
0.8799

Download 5,05 Mb.

Do'stlaringiz bilan baham:
1   ...   428   429   430   431   432   433   434   435   ...   868




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish