Surveys, 39, 2007.
[MO63]
L. E. Moses and R. V. Oakford. Tables of Random Permutations. Stanford
University Press, Stanford, Calif., 1963.
[Moe90]
S. Moen. Drawing dynamic trees. IEEE Software, 7-4:21–28, 1990.
[Moo59]
E. F. Moore. The shortest path in a maze. In Proc. International Symp.
Switching Theory, pages 285–292. Harvard University Press, 1959.
[MOS06]
K. Mehlhorn, R. Osbild, and M. Sagraloff. Reliable and efficient compu-
tational geometry via controlled perturbation. In Proc. Int. Coll. on Au-
tomata, Languages, and Programming (ICALP), volume 4051, pages 299–
310. Springer Verlag, Lecture Notes in Computer Science, 2006.
[Mou04]
D. Mount. Geometric intersection. In J. Goodman and J. O’Rourke, editors,
Handbook of Discrete and Computational Geometry, pages 857–876. CRC
Press, 2004.
[MOV96]
A. Menezes, P. Oorschot, and S. Vanstone. Handbook of Applied Cryptogra-
phy. CRC Press, Boca Raton, 1996.
[MP80]
W. Masek and M. Paterson. A faster algorithm for computing string edit
distances. J. Computer and System Sciences, 20:18–31, 1980.
[MPC
+
06]
S. Mueller, D. Papamichial, J.R. Coleman, S. Skiena, and E. Wimmer. Re-
duction of the rate of poliovirus protein synthesis through large scale codon
deoptimization causes virus attenuation of viral virulence by lowering spe-
cific infectivity. J. of Virology, 80:9687–96, 2006.
[MPT99]
S. Martello, D. Pisinger, and P. Toth. Dynamic programming and strong
bounds for the 0-1 knapsack problem. Management Science, 45:414–424,
1999.
[MPT00]
S. Martello, D. Pisinger, and P. Toth. New trends in exact algorithms for the
0-1 knapsack problem. European Journal of Operational Research, 123:325–
332, 2000.
[MR95]
R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge Univer-
sity Press, New York, 1995.
[MR01]
W. Myrvold and F. Ruskey. Ranking and unranking permutations in linear
time. Info. Processing Letters, 79:281–284, 2001.
[MR06]
W. Mulzer and G. Rote. Minimum weight triangulation is NP-hard. In Proc.
22nd ACM Symp. on Computational Geometry, pages 1–10, 2006.
[MRRT53]
N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, and A. H. Teller. Equa-
tion of state calculations by fast computing machines. Journal of Chemical
Physics, 21(6):1087–1092, June 1953.
[MS91]
B. Moret and H. Shapiro. Algorithm from P to NP: Design and Efficiency.
Benjamin/Cummings, Redwood City, CA, 1991.
B I B L I O G R A P H Y
695
[MS93]
M. Murphy and S. Skiena. Ranger: A tool for nearest neighbor search in high
dimensions. In Proc. Ninth ACM Symposium on Computational Geometry,
pages 403–404, 1993.
[MS95a]
D. Margaritis and S. Skiena. Reconstructing strings from substrings in
rounds. Proc. 36th IEEE Symp. Foundations of Computer Science (FOCS),
1995.
[MS95b]
J. S. B. Mitchell and S. Suri. Separation and approximation of polyhedral
objects. Comput. Geom. Theory Appl., 5:95–114, 1995.
[MS00]
M. Mascagni and A. Srinivasan. Algorithm 806: Sprng: A scalable library
for pseudorandom number generation. ACM Trans. Mathematical Software,
26:436–461, 2000.
[MS05]
D. Mehta and S. Sahni. Handbook of Data Structures and Applications.
Chapman and Hall / CRC, Boca Raton, FL, 2005.
[MT85]
S. Martello and P. Toth. A program for the 0-1 multiple knapsack problem.
Do'stlaringiz bilan baham: |