Tertium Organum



Download 2,55 Mb.
Pdf ko'rish
bet136/178
Sana22.07.2022
Hajmi2,55 Mb.
#838514
1   ...   132   133   134   135   136   137   138   139   ...   178
Bog'liq
Tertium-Organum-by-P-D-Ouspensky

they will change 
correspondingly, remaining at the same time equal.
This violates the fundamental laws 
of mathematics, accepted for 
finite
numbers. Having changed, a finite number can no 
longer be equal to itself. And yet we see here that, 
in changing,
a transfinite number 
remains equal to itself. 
Moreover, transfinite numbers are entirely real. We can find examples in the real 
world corresponding to expressions 

and even 


and 



Let us take a line, any segment of a line. We know that the number of points in this 
line is equal to infinity, because a point has no dimensions. If our segment equals an 
inch, and side by side with it we imagine a segment which equals a mile, then each 
point in the small segment will have a corresponding point in the large segment. The 
number of points in the segment an inch long is infinite. The number of points in a mile 
is also infinite. The result is 






Now let us imagine a square of which the given line 
a
constitutes one side. 
The number of 
lines
in a square is infinite. The number of points in every line 
is infinite. Consequently the number of points in a square equals infinity 
multiplied by itself an infinite number of times 


. This magnitude is 
undoubtedly infinitely greater than the first 

. And at the same time they are 
equal, as all infinite magnitudes are equal, because if there is 
infinity, 
it is one 
and it cannot change.
On the square 
a
2
which we have obtained, let us construct a cube. This 
cube consists of an infinite number of squares, just as the square consists of 
an infinite number of lines, and the line - of an infinite number of points. 
Consequently the number of points in the cube 
a

equals 


. This expression 
is 
equal
to the expressions 


and 
∞, 
which means that infinity continues to 
grow, 
remaining at the same time unchanged. 
Thus we see in transfinite numbers that two magnitudes, each of which 
separately equals a third, may be not equal to each other. Altogether we see
that the fundamental axioms of our mathematics 
do not operate there,
are not 
applicable there. And we have every right to establish the law that the 
fundamental axioms of mathematics, cited above, are not applicable there but 
are valid and applicable only for 
finite
numbers. 
Moreover, we can say that the fundamental axioms of our mathematics are 
valid only for 
constant
magnitudes. In other words, they require 
unity of time 
and place,
namely, each magnitude is equal to itself 
at a given moment.
But 
if we take a variable magnitude, and take it at different moments, it will not 
be equal to itself. Of course one may say that, 
in changing,
it becomes 
another magnitude, 
that it is a given magnitude only so long as it does not 
change. But this is exactly what I mean. 
Axioms of our mathematics are applicable only to finite and 
constant 
magnitudes. 
So, in direct opposition to the usual view, we have to admit that 
mathematics of finite and constant magnitudes is unreal, i.e. it deals with 
unreal relations of unreal magnitudes, whereas the mathematics of infinite 
and 
fluent
magnitudes is real, i.e. it deals with the real relations of real 
magnitudes. 
Indeed, the greatest magnitude of the 

Download 2,55 Mb.

Do'stlaringiz bilan baham:
1   ...   132   133   134   135   136   137   138   139   ...   178




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish