ТЕМА 3.1. Техническое обслуживание системы охлаждения системного блока
Система охлаждения играет важную роль в работе системного блока. Система охлаждения компьютера - это набор средств для отвода тепла от нагревающихся в процессе работы компьютерных компонентов. Система охлаждения бывает пассивной и активной.
Тепло в конечном итоге может утилизироваться:
. В атмосферу (радиаторные системы охлаждения):
· Пассивное охлаждение (отвод тепла от радиатора осуществляется за счёт естественной конвекции)
· Активное охлаждение (отвод тепла от радиатора осуществляется за счёт его обдува вентиляторами)
2. Вместе с теплоносителем (проточные системы водяного охлаждения)
. За счет фазового перехода теплоносителя (системы открытого испарения)
По способу отвода тепла от нагревающихся элементов, системы охлаждения делятся на:
1. Системы воздушного (аэрогенного) охлаждения
2. Системы жидкостного охлаждения
3. Фреоновая установка
. Системы открытого испарения
Система воздушного охлаждения.
Принцип работы заключается в непосредственной передаче тепла от нагревающегося компонента на радиатор за счёт теплопроводности материала или с помощью тепловых трубок (или их разновидностей, таких как термосифон и испарительная камера).
Наиболее распространенный тип систем охлаждения в настоящее время. Отличается высокой универсальностью - радиаторы устанавливаются на большинство компьютерных компонентов с высоким тепловыделением. Эффективность охлаждения зависит от эффективной площади рассеивания тепла радиатора, температуры и скорости проходящего через него воздушного потока. На компоненты с относительно низким тепловыделением (чипсеты, транзисторы цепей питания, модули оперативной памяти), как правило устанавливаются простейшие пассивные радиаторы. На некоторые компьютерные компоненты, в частности жёсткие диски, установить радиатор затруднительно, поэтому они охлаждаются за счёт обдува вентилятором. На центральный и графический процессоры устанавливаются преимущественно активные радиаторы (кулеры). Пассивное воздушное охлаждение центрального и графического процессоров требует применения специальных радиаторов с высокой эффективностью отвода тепла при низкой скорости проходящего воздушного потока и применяется для построения бесшумного персонального компьютера.
Система жидкостного охлаждения.
Принцип работы - передача тепла от нагревающегося компонента радиатору с помощью рабочей жидкости, которая циркулирует в системе. В качестве рабочей жидкости чаще всего используется дистиллированная вода, часто с добавками имеющими бактерицидный и/или антигальванический эффект; иногда - масло, антифриз, жидкий металл, или другие специальные жидкости.
Система жидкостного охлаждения состоит из:
· Помпы - насоса для циркуляции рабочей жидкости
· Теплосъёмника (ватерблока, водоблока, головки охлаждения) - устройства, отбирающего тепло у охлаждаемого элемента и передающего его рабочей жидкости
· Радиатора для рассеивания тепла рабочей жидкости. Может быть активным или пассивным
· Резервуара с рабочей жидкостью, служащего для компенсации теплового расширения жидкости, увеличения тепловой инерции системы и повышения удобства заправки и слива рабочей жидкости
· Шлангов или труб
· (Опционально) Датчика потока жидкости
Жидкость должна обладать высокой теплопроводностью, чтобы свести к минимуму перепад температур между стенкой трубки и поверхностью испарения, а также высокой удельной теплоёмкостью, чтобы при меньшей скорости циркуляции жидкости в контуре обеспечить большую эффективность охлаждения.
Система охлаждения играет важную роль в работе системного блока. Система охлаждения компьютера - это набор средств для отвода тепла от нагревающихся в процессе работы компьютерных компонентов. Система охлаждения бывает пассивной и активной.
Тепло в конечном итоге может утилизироваться:
. В атмосферу (радиаторные системы охлаждения):
· Пассивное охлаждение (отвод тепла от радиатора осуществляется за счёт естественной конвекции)
· Активное охлаждение (отвод тепла от радиатора осуществляется за счёт его обдува вентиляторами)
2. Вместе с теплоносителем (проточные системы водяного охлаждения)
. За счет фазового перехода теплоносителя (системы открытого испарения)
По способу отвода тепла от нагревающихся элементов, системы охлаждения делятся на:
1. Системы воздушного (аэрогенного) охлаждения
2. Системы жидкостного охлаждения
3. Фреоновая установка
. Системы открытого испарения
Система воздушного охлаждения.
Принцип работы заключается в непосредственной передаче тепла от нагревающегося компонента на радиатор за счёт теплопроводности материала или с помощью тепловых трубок (или их разновидностей, таких как термосифон и испарительная камера).
Наиболее распространенный тип систем охлаждения в настоящее время. Отличается высокой универсальностью - радиаторы устанавливаются на большинство компьютерных компонентов с высоким тепловыделением. Эффективность охлаждения зависит от эффективной площади рассеивания тепла радиатора, температуры и скорости проходящего через него воздушного потока. На компоненты с относительно низким тепловыделением (чипсеты, транзисторы цепей питания, модули оперативной памяти), как правило устанавливаются простейшие пассивные радиаторы. На некоторые компьютерные компоненты, в частности жёсткие диски, установить радиатор затруднительно, поэтому они охлаждаются за счёт обдува вентилятором. На центральный и графический процессоры устанавливаются преимущественно активные радиаторы (кулеры). Пассивное воздушное охлаждение центрального и графического процессоров требует применения специальных радиаторов с высокой эффективностью отвода тепла при низкой скорости проходящего воздушного потока и применяется для построения бесшумного персонального компьютера.
Система жидкостного охлаждения.
Принцип работы - передача тепла от нагревающегося компонента радиатору с помощью рабочей жидкости, которая циркулирует в системе. В качестве рабочей жидкости чаще всего используется дистиллированная вода, часто с добавками имеющими бактерицидный и/или антигальванический эффект; иногда - масло, антифриз, жидкий металл, или другие специальные жидкости.
Система жидкостного охлаждения состоит из:
· Помпы - насоса для циркуляции рабочей жидкости
· Теплосъёмника (ватерблока, водоблока, головки охлаждения) - устройства, отбирающего тепло у охлаждаемого элемента и передающего его рабочей жидкости
· Радиатора для рассеивания тепла рабочей жидкости. Может быть активным или пассивным
· Резервуара с рабочей жидкостью, служащего для компенсации теплового расширения жидкости, увеличения тепловой инерции системы и повышения удобства заправки и слива рабочей жидкости
· Шлангов или труб
· (Опционально) Датчика потока жидкости
Жидкость должна обладать высокой теплопроводностью, чтобы свести к минимуму перепад температур между стенкой трубки и поверхностью испарения, а также высокой удельной теплоёмкостью, чтобы при меньшей скорости циркуляции жидкости в контуре обеспечить большую эффективность охлаждения.
Рис.1. Принципиальная схема системы жидкостного охлаждения
Фреоновые установки
Холодильная установка, испаритель которой установлен непосредственно на охлаждаемый компонент. Такие системы позволяют получить отрицательные температуры на охлаждаемом компоненте при непрерывной работе, что необходимо для экстремального разгона процессоров.
Недостатки:
· Необходимость теплоизоляции холодной части системы и борьбы с конденсатом
· Трудности охлаждения нескольких компонентов
· Повышенное электропотребление
· Сложность и дороговизна
Техническое обслуживание системы воздушного охлаждения.
Вследствие перепадов скоростей системные блоки компьютеров становятся настоящими пылесборниками. Скорость воздуха, идущего через входные отверстия, многократно превышает скорость потоков внутри корпуса. Кроме того, воздушные потоки часто меняют направление, огибая компоненты ПК. Поэтому большинство (до 70%) приносимой извне пыли оседает внутри корпуса; необходимо хотя бы раз в год производить чистку.
Чтобы в корпус попадало меньше пыли существуют волокнистые фильтры. Волокнистые фильтры перехватывают более 70% пыли, что позволяет чистить корпус значительно реже.
Зачастую в корпуса современных ПК устанавливают несколько вытяжных вентиляторов диаметром 120 мм, при этом воздух поступает в корпус через множество входных отверстий, рассредоточенных по всей конструкции, - их суммарная площадь много меньше площади вентиляторов. Устанавливать фильтр в такой корпус без доработки бессмысленно.
В связи с большим количеством пыли в помещениях, необходимо время от времени очищать системный блок, а именно систему охлаждения, периодичность очистки корпуса зависит от места, где установлен ПК. Если он установлен в хорошо проветриваемом помещении, то очистку следует проводить раз в 3 года. Если в квартире, где регулярно моют полы - раз в год. В офисе - раз полгода. А если он стоит под столом - то раз в 3-4месяца.
В корпусах типа ATX и совместимых с ними вентилятор блока питания обычно нагнетает воздух в корпусе компьютера (пассивное охлаждение процессора). Если закрыть всасывающее отверстие сеткой, то количество пыли в корпусе заметно уменьшится.
Корпус спроектирован с таким расчетом, чтобы проходящий через корпус воздух охлаждал все компоненты, а затем выходил из него.
Не вдаваясь в тонкости происходящих процессов можно сказать - пыль отлагается, в первую очередь, в местах где происходит резкое изменение давления (или скорости воздушного потока).
Поэтому стоит обращать внимание на места отложения пыли, они говорят о критических точках системы охлаждения, это лопасти вентилятора, пыль на них отлагается всегда за счет завихрений воздушных потоков. Но если на них происходит срыв воздушного потока, отложение резко усиливается. Это происходит тогда, когда давление создаваемое вентилятором меньше чем аэродинамическое сопротивление корпуса компьютера. В этом случае расход воздуха через вентилятор падает и происходит срыв воздушных потоков на вентиляторе, появляются зоны перепадов давления и в них захватываются пылинки, которые сталкиваясь с движущимися на большой скорости лопастями, внедряясь в их поверхность. Если обратить внимание отложения получаются достаточно плотные, т.е. характеристики вентилятора не согласованы с импедансом устройства и работает неэффективно. Это требует доработки системы вентиляции или замены вентилятора. Между ребрами радиатора. В этом случае в межреберном зазоре имеет место падение скорости воздушного потока, что снижает эффективность охлаждения, причинами могут быть слишком большая шероховатость поверхности ребер, вентилятор недостаточной производительности, проблема решается заменой куллера (блока радиатор - вентилятор). Непосредственно за входными отверстиями охлаждающего воздуха (обычно на дне системного блока).
В этом месте, когда воздух проходя через небольшое отверстие попадает во много раз большее сечение внутреннего объема имеет место именно резкое падение давления или снижения скорости воздушного потока. Аналогично происходит на выходе воздушного потока из межреберного пространства куллера. Простейшим выходом из имеющейся ситуации является установка фильтра. Но это сопряжено с некоторыми проблемам. Для чистки системного блока применяются следующие инструменты: пылесос со щеткой на раструбе - несколько кистей разных размеров с упругим волосом - баночку для снятого крепежа - отвертку (крестовую). Большая кисть имеет упругий натуральный волос длинной 55 мм.
Она удобна для чистки всех узлов системного блока, не мнется и хорошо очищается от пыли.
Малую кисть можно использовать для чистки лопастей вентиляторов и видеокарты.
Кистью можно согнать пыль с загрязненной поверхности, но она снова сядет на детали компьютера, поэтому чистку необходимо проводить с постоянным отсосом воздуха и с ним, сметенной пыли.
Для отсоса можно использовать любой пылесос. Главное, чтобы всасывающий раструб имел по периметру щетку.
Пыль отлагается на поверхностях узлов направленных вверх, это днище, верхние поверхности fdd, hdd, cd-r, видеокарты, пыль отлагается так же в каналах радиаторов и на выходе из них или прилегающих к выходу из каналов поверхностях.
Между куллером и центральным или видео процессором наносится тонкий слой термопасты для улучшения охлаждения. При замене старой термопасты используют качественную теплопроводящую пасту, размазанную тонким слоем, это в дальнейшем, не приведет к перегреву процессоров.
Сначала проводится очистка корпуса, потом очистка видеокарты и других устройств, потом осмотр и окончательная чистка корпуса перед установкой крышки.
Видеокарту и другие устройства установленные в слоты, необходимо чистить вынимая их из корпуса, такая чистка считается более качественной.
Переднюю панель можно очистить с помощью обычной влажной тряпочки.
Ни в коем случае нельзя использовать средства, содержащие ацетон или другие растворители. Они влияют на состояние пластмассы и могут привести к порче передней панели и приводов дисководов.
Do'stlaringiz bilan baham: |